Epsilon grid order

Author:

Böhm Christian1,Braunmüller Bernhard1,Krebs Florian1,Kriegel Hans-Peter1

Affiliation:

1. Institute for Computer Science, University of Munich, Oettingenstr. 67, D-80538 München, Germany

Abstract

The similarity join is an important database primitive which has been successfully applied to speed up applications such as similarity search, data analysis and data mining. The similarity join combines two point sets of a multidimensional vector space such that the result contains all point pairs where the distance does not exceed a parameter ε. In this paper, we propose the Epsilon Grid Order, a new algorithm for determining the similarity join of very large data sets. Our solution is based on a particular sort order of the data points, which is obtained by laying an equi-distant grid with cell length ε over the data space and comparing the grid cells lexicographically. A typical problem of grid-based approaches such as MSJ or the ε-kdB-tree is that large portions of the data sets must be held simultaneously in main memory. Therefore, these approaches do not scale to large data sets. Our technique avoids this problem by an external sorting algorithm and a particular scheduling strategy during the join phase. In the experimental evaluation, a substantial improvement over competitive techniques is shown.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fast knowledge graph completion using graphics processing units;Journal of Parallel and Distributed Computing;2024-08

2. Similarity joins and clustering for SPARQL;Semantic Web;2024-03-06

3. Survey on Exact kNN Queries over High-Dimensional Data Space;Sensors;2023-01-05

4. Heterogeneous CPU-GPU Epsilon Grid Joins: Static and Dynamic Work Partitioning Strategies;Data Science and Engineering;2020-10-21

5. A coordinate-oblivious index for high-dimensional distance similarity searches on the GPU;Proceedings of the 34th ACM International Conference on Supercomputing;2020-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3