DeSQL: Interactive Debugging of SQL in Data-Intensive Scalable Computing

Author:

Haroon Sabaat1ORCID,Brown Chris1ORCID,Gulzar Muhammad Ali1ORCID

Affiliation:

1. Virginia Tech, Blacksburg, USA

Abstract

SQL is the most commonly used front-end language for data-intensive scalable computing (DISC) applications due to its broad presence in new and legacy workflows and shallow learning curve. However, DISC-backed SQL introduces several layers of abstraction that significantly reduce the visibility and transparency of workflows, making it challenging for developers to find and fix errors in a query. When a query returns incorrect outputs, it takes a non-trivial effort to comprehend every stage of the query execution and find the root cause among the input data and complex SQL query. We aim to bring the benefits of step-through interactive debugging to DISC-powered SQL with DeSQL. Due to the declarative nature of SQL, there are no ordered atomic statements to place a breakpoint to monitor the flow of data. DeSQL’s automated query decomposition breaks a SQL query into its constituent sub queries, offering natural locations for setting breakpoints and monitoring intermediate data. However, due to advanced query optimization and translation in DISC systems, a user query rarely matches the physical execution, making it challenging to associate subqueries with their intermediate data. DeSQL performs fine-grained taint analysis to dynamically map the subqueries to their intermediate data, while also recognizing subqueries removed by the optimizers. For such subqueries, DeSQL efficiently regenerates the intermediate data from a nearby subquery’s data. On the popular TPC-DC benchmark, DeSQL provides a complete debugging view in 13% less time than the original job time while incurring an average overhead of 10% in addition to retaining Apache Spark’s scalability. In a user study comprising 15 participants engaged in two debugging tasks, we find that participants utilizing DeSQL identify the root cause behind a wrong query output in 74% less time than the de-facto, manual debugging.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3