Symphony: Orchestrating Sparse and Dense Tensors with Hierarchical Heterogeneous Processing

Author:

Pellauer Michael1ORCID,Clemons Jason1ORCID,Balaji Vignesh1ORCID,Crago Neal1ORCID,Jaleel Aamer1ORCID,Lee Donghyuk1ORCID,O’Connor Mike1ORCID,Parashar Anghsuman1ORCID,Treichler Sean1ORCID,Tsai Po-An1ORCID,Keckler Stephen W.1ORCID,Emer Joel S.1ORCID

Affiliation:

1. NVIDIA, USA

Abstract

Sparse tensor algorithms are becoming widespread, particularly in the domains of deep learning, graph and data analytics, and scientific computing. Current high-performance broad-domain architectures, such as GPUs, often suffer memory system inefficiencies by moving too much data or moving it too far through the memory hierarchy. To increase performance and efficiency, proposed domain-specific accelerators tailor their architectures to the data needs of a narrow application domain, but as a result cannot be applied to a wide range of algorithms or applications that contain a mix of sparse and dense algorithms. This article proposes Symphony, a hybrid programmable/specialized architecture that focuses on the orchestration of data throughout the memory hierarchy to simultaneously reduce the movement of unnecessary data and data movement distances. Key elements of the Symphony architecture include (1) specialized reconfigurable units aimed not only at roofline floating-point computations but also at supporting data orchestration features, such as address generation, data filtering, and sparse metadata processing; and (2) distribution of computation resources (both programmable and specialized) throughout the on-chip memory hierarchy. We demonstrate that Symphony can match non-programmable ASIC performance on sparse tensor algebra and provide 31× improved runtime and 44× improved energy over a comparably provisioned GPU for these applications.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3