CoupledGT: Coupled Geospatial-temporal Data Modeling for Air Quality Prediction

Author:

Ren Siyuan1ORCID,Guo Bin1ORCID,Li Ke1ORCID,Wang Qianru1ORCID,Wang Qinfen1ORCID,Yu Zhiwen1ORCID

Affiliation:

1. Northwestern Polytechnical University

Abstract

Air pollution seriously affects public health, while effective air quality prediction remains a challenging problem since the complex spatial-temporal couplings exist in multi-area monitoring data of the city. Current approaches rarely consider relative geographical locations when capturing spatial-temporal relations, instead the latent inter-dependencies (i.e., implicit spatial relations) of data as a replacement. However, such relations cannot necessarily reflect the diffusion of air pollutants in the real world, and genuine location-related information could be lost during the implicit relation learning process. In this article, we introduce a new concept, geospatial-temporal data, and propose a novel deep neural network architecture, CoupledGT, to learn the geospatial-temporal couplings within data for air quality prediction. Specifically, the asymmetric diffusion relation of air quality data between two areas is first explicitly represented by the newly developed planar Gaussian diffusion (PGD) equation. And then, a geospatial couplings diffuser (GCD) is designed to parameterize the PGD equation and learn multi-areas diffusion mutually affected geospatial couplings. Besides, the RNN is employed to capture temporal couplings of each area, and incorporated with GCD to learn both shared and unique characteristics of the geospatial-temporal data simultaneously, which empowers the generalization and efficiency of the model. Extensive experiments on two real-world datasets demonstrate our method is robust and outperforms existing baseline methods in air quality prediction tasks.

Funder

National Science Fund for Distinguished Young Scholars

National Key R&D Program of China

National Natural Science Foundation of China

Natural Science Basic Research Program of Shaanxi

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spatio-Temporal Data Mining with Information Integrity Protection: Graph Signal Based Air Quality Prediction;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

2. Group-Aware Graph Neural Network for Nationwide City Air Quality Forecasting;ACM Transactions on Knowledge Discovery from Data;2023-12-09

3. The Impact of Air Pollution on Respiratory Health Results: An Analysis of Asthma and COPD in a Population Study;2023 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS);2023-11-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3