1. He , L. , Tang , J. , Li , X. , Wang , P. , Chen , F. , Wang , T. : Multi‑type factors representation learning for deep learning‑based knowledge tracing. Word Wide Web Journal 2022 , 1 - 30 ( 2022 ) He, L., Tang, J., Li, X., Wang, P., Chen, F., Wang, T.: Multi‑type factors representation learning for deep learning‑based knowledge tracing. Word Wide Web Journal 2022, 1-30 (2022)
2. Zhao , Y. , Ma , H. , Wang , W. , Gao , W. , Yang , F. , He , X. : Exploiting multiple question factors for knowledge tracing. Expert Systems with Applications , 223 , 119786 ( 2023 ) Zhao, Y., Ma, H., Wang, W., Gao, W., Yang, F., He, X.: Exploiting multiple question factors for knowledge tracing. Expert Systems with Applications, 223, 119786 (2023)
3. Context-Aware Attentive Knowledge Tracing
4. Graph-based Knowledge Tracing: Modeling Student Proficiency Using Graph Neural Network
5. Pandey , S. , Karypis , G. : A self attentive model for knowledge tracing . In: Proceedings of the 12th International Conference on Educational Data Mining. pp. 384 - 389 . EDM ( 2019 ) Pandey, S., Karypis, G.: A self attentive model for knowledge tracing. In: Proceedings of the 12th International Conference on Educational Data Mining. pp. 384-389. EDM (2019)