A Visual Analytics Approach for Interactive Document Clustering

Author:

Sherkat Ehsan1ORCID,Milios Evangelos E.2,Minghim Rosane3

Affiliation:

1. Dalhousie University, Canada

2. Dalhousie University, Halifax, Canada

3. Universidade de São Paulo, Brazil

Abstract

Document clustering is a necessary step in various analytical and automated activities. When guided by the user, algorithms are tailored to imprint a perspective on the clustering process that reflects the user’s understanding of the dataset. More than just allow for customized adjustment of the clusters, a visual analytics approach will provide tools for the user to draw new insights on the collection. While contributing his or her perspective, the user will also acquire a deeper understanding of the data set. To that effect, we propose a novel visual analytics system for interactive document clustering. We built our system on top of clustering algorithms that can adapt to user’s feedback. In the proposed system, initial clustering is created based on the user-defined number of clusters and the selected clustering algorithm. A set of coordinated visualizations allow the examination of the dataset and the results of the clustering. The visualization provides the user with the highlights of individual documents and understanding of the evolution of documents over the time period to which they relate. The users then interact with the process by means of changing key-terms that drive the process according to their knowledge of the documents domain. In key-term-based interaction, the user assigns a set of key-terms to each target cluster to guide the clustering algorithm. We have improved that process with a novel algorithm for choosing proper seeds for the clustering. Results demonstrate that not only the system has improved considerably its precision, but also its effectiveness in the document-based decision making. A set of quantitative experiments and a user study have been conducted to show the advantages of the approach for document analytics based on clustering. We performed and reported on the use of the framework in a real decision-making scenario that relates users discussion by email to decision making in improving patient care. Results show that the framework is useful even for more complex data sets such as email conversations.

Funder

Natural Sciences and Engineering Research Council of Canada

International Development Research Center, Ottawa, Canada

Boeing Compan

CNPq and FAPESP

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Human-Computer Interaction

Reference61 articles.

1. Accessed: 2017-10-07. Mind Map file format Description. http://freemind.sourceforge.net. Accessed: 2017-10-07. Mind Map file format Description. http://freemind.sourceforge.net.

2. Accessed: 2017-10-07. VNA file format Description. https://gephi.org/users/supported-graph-formats/netdraw-vna-format/. Accessed: 2017-10-07. VNA file format Description. https://gephi.org/users/supported-graph-formats/netdraw-vna-format/.

3. Incorporating domain knowledge into topic modeling via Dirichlet Forest priors

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3