A Statistical Language Model for Pre-Trained Sequence Labeling: A Case Study on Vietnamese

Author:

Liao Xianwen1,Huang Yongzhong1,Yang Peng1,Chen Lei1

Affiliation:

1. Guilin University of Electronic Technology, Guilin, Guangxi, China

Abstract

By defining the computable word segmentation unit and studying its probability characteristics, we establish an unsupervised statistical language model (SLM) for a new pre-trained sequence labeling framework in this article. The proposed SLM is an optimization model, and its objective is to maximize the total binding force of all candidate word segmentation units in sentences under the condition of no annotated datasets and vocabularies. To solve SLM, we design a recursive divide-and-conquer dynamic programming algorithm. By integrating SLM with the popular sequence labeling models, Vietnamese word segmentation, part-of-speech tagging and named entity recognition experiments are performed. The experimental results show that our SLM can effectively promote the performance of sequence labeling tasks. Just using less than 10% of training data and without using a dictionary, the performance of our sequence labeling framework is better than the state-of-the-art Vietnamese word segmentation toolkit VnCoreNLP on the cross-dataset test. SLM has no hyper-parameter to be tuned, and it is completely unsupervised and applicable to any other analytic language. Thus, it has good domain adaptability.

Funder

National Natural Science Foundation of China

Basic and Applied Basic Research Fund of Guangdong Province, China

Guangxi Science and Technology Plan Projecet

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3