Testing consensus implementations using communication closure

Author:

Drăgoi Cezara1,Enea Constantin2,Ozkan Burcu Kulahcioglu3,Majumdar Rupak3ORCID,Niksic Filip4

Affiliation:

1. Inria, France / Informal Systems, France

2. University of Paris, France / IRIF, France / CNRS, France

3. MPI-SWS, Germany

4. University of Pennsylvania, USA

Abstract

Large scale production distributed systems are difficult to design and test. Correctness must be ensured when processes run asynchronously, at arbitrary rates relative to each other, and in the presence of failures, e.g., process crashes or message losses. These conditions create a huge space of executions that is difficult to explore in a principled way. Current testing techniques focus on systematic or randomized exploration of all executions of an implementation while treating the implemented algorithms as black boxes. On the other hand, proofs of correctness of many of the underlying algorithms often exploit semantic properties that reduce reasoning about correctness to a subset of behaviors. For example, the communication-closure property, used in many proofs of distributed consensus algorithms, shows that every asynchronous execution of the algorithm is equivalent to a lossy synchronous execution, thus reducing the burden of proof to only that subset. In a lossy synchronous execution, processes execute in lock-step rounds, and messages are either received in the same round or lost forever—such executions form a small subset of all asynchronous ones. We formulate the communication-closure hypothesis , which states that bugs in implementations of distributed consensus algorithms will already manifest in lossy synchronous executions and present a testing algorithm based on this hypothesis. We prioritize the search space based on a bound on the number of failures in the execution and the rate at which these failures are recovered. We show that a random testing algorithm based on sampling lossy synchronous executions can empirically find a number of bugs—including previously unknown ones—in production distributed systems such as Zookeeper, Cassandra, and Ratis, and also produce more understandable bug traces.

Funder

European Research Council

Agence Nationale de la Recherche

Deutsche Forschungsgemeinschaft

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Domain Specific Language for Testing Distributed Protocol Implementations;Lecture Notes in Computer Science;2024

2. Greybox Fuzzing of Distributed Systems;Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security;2023-11-15

3. Liveness Checking of the HotStuff Protocol Family;2023 IEEE 28th Pacific Rim International Symposium on Dependable Computing (PRDC);2023-10-24

4. Evolutionary Approach for Concurrency Testing of Ripple Blockchain Consensus Algorithm;2023 IEEE/ACM 45th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP);2023-05

5. Randomized Testing of Byzantine Fault Tolerant Algorithms;Proceedings of the ACM on Programming Languages;2023-04-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3