Multimodular Text Normalization of Dutch User-Generated Content

Author:

Schulz Sarah1ORCID,Pauw Guy De2,Clercq Orphée De1,Desmet Bart1,Hoste Véronique1,Daelemans Walter2,Macken Lieve1

Affiliation:

1. Ghent University, Gent, Belgium

2. University of Antwerp, Antwerp, Belgium

Abstract

As social media constitutes a valuable source for data analysis for a wide range of applications, the need for handling such data arises. However, the nonstandard language used on social media poses problems for natural language processing (NLP) tools, as these are typically trained on standard language material. We propose a text normalization approach to tackle this problem. More specifically, we investigate the usefulness of a multimodular approach to account for the diversity of normalization issues encountered in user-generated content (UGC). We consider three different types of UGC written in Dutch (SNS, SMS, and tweets) and provide a detailed analysis of the performance of the different modules and the overall system. We also apply an extrinsic evaluation by evaluating the performance of a part-of-speech tagger, lemmatizer, and named-entity recognizer before and after normalization.

Funder

IWT-SBO

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Reference63 articles.

1. Using Product and Social Network Data to Improve Online Advertising;Aven Brandy Lee;U.S. Patent App.,2009

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Graph-based Turkish text normalization and its impact on noisy text processing;Engineering Science and Technology, an International Journal;2022-11

2. User-Generated Content and Consumer Brand Engagement;Research Anthology on Social Media Advertising and Building Consumer Relationships;2022-05-13

3. Context-Aware Deep Learning Model for Detection of Roman Urdu Hate Speech on Social Media Platform;IEEE Access;2022

4. Efficient Text Normalization via Hybrid Bi-directional LSTM;2021 IEEE Bombay Section Signature Conference (IBSSC);2021-11-18

5. Is neural always better? SMT versus NMT for Dutch text normalization;Expert Systems with Applications;2021-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3