RapidMRC

Author:

Tam David K.1,Azimi Reza1,Soares Livio B.1,Stumm Michael1

Affiliation:

1. University of Toronto, Toronto, Canada

Abstract

Miss rate curves (MRCs) are useful in a number of contexts. In our research, online L2 cache MRCs enable us to dynamically identify optimal cache sizes when cache-partitioning a shared-cache multicore processor. Obtaining L2 MRCs has generally been assumed to be expensive when done in software and consequently, their usage for online optimizations has been limited. To address these problems and opportunities, we have developed a low-overhead software technique to obtain L2 MRCs online on current processors, exploiting features available in their performance monitoring units so that no changes to the application source code or binaries are required. Our technique, called RapidMRC, requires a single probing period of roughly 221 million processor cycles (147 ms), and subsequently 124 million cycles (83 ms) to process the data. We demonstrate its accuracy by comparing the obtained MRCs to the actual L2 MRCs of 30 applications taken from SPECcpu2006, SPECcpu2000, and SPECjbb2000. We show that RapidMRC can be applied to sizing cache partitions, helping to achieve performance improvements of up to 27%.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. -LAP: A Lightweight and Adaptive Cache Partitioning Scheme With Prudent Resizing Decisions for Content Delivery Networks;IEEE Transactions on Cloud Computing;2024-07

2. Accelerating multi-tier storage cache simulations using knee detection;Performance Evaluation;2024-05

3. FLOWS: Balanced MRC Profiling for Heterogeneous Object-Size Cache;Proceedings of the Nineteenth European Conference on Computer Systems;2024-04-22

4. Efficient Cross-platform Multiplexing of Hardware Performance Counters via Adaptive Grouping;ACM Transactions on Architecture and Code Optimization;2024-01-19

5. Guiding Simulations of Multi-Tier Storage Caches Using Knee Detection;2023 31st International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS);2023-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3