Efficient online validation with delta execution

Author:

Tucek Joseph1,Xiong Weiwei1,Zhou Yuanyuan1

Affiliation:

1. University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA

Abstract

Software systems are constantly changing. Patches to fix bugs and patches to add features are all too common. Every change risks breaking a previously working system. Hence administrators loathe change, and are willing to delay even critical security patches until after fully validating their correctness. Compared to off-line validation, on-line validation has clear advantages since it tests against real life workloads. Yet unfortunately it imposes restrictive overheads as it requires running the old and new versions side-by-side. Moreover, due to spurious differences (e.g. event timing, random number generation, and thread interleavings), it is difficult to compare the two for validation. To allow more effective on-line patch validation, we propose a new mechanism, called delta execution, that is based on the observation that most patches are small. Delta execution merges the two side-by-side executions for most of the time and splits only when necessary, such as when they access different data or execute different code. This allows us to perform on-line validation not only with lower overhead but also with greatly reduced spurious differences, allowing us to effectively validate changes. We first validate the feasibility of our idea by studying the characteristics of 240 patches from 4 server programs; our examination shows that 77% of the changes should not be expected to cause large changes and are thereby feasible for Delta execution. We then implemented Delta execution using dynamic instrumentation. Using real world patches from 7 server applications and 3 other programs, we compared our implementation of Delta execution against a traditional side-by-side on-line validation. Delta execution outperformed traditional validation by up to 128%; further, for 3 of the changes, spurious differences caused the traditional validation to fail completely while Delta execution succeeded. This demonstrates that Delta execution can allow administrators to use on-line validation to confidently ensure the correctness of the changes they apply.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference25 articles.

1. CERT. Cert statistics. http://www.cert.org/ stats/ cert stats.html. CERT. Cert statistics. http://www.cert.org/ stats/ cert stats.html.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Update with care: Testing candidate bug fixes and integrating selective updates through binary rewriting;Journal of Systems and Software;2022-09

2. DiffStream: differential output testing for stream processing programs;Proceedings of the ACM on Programming Languages;2020-11-13

3. Ad hoc Test Generation Through Binary Rewriting;2020 IEEE 20th International Working Conference on Source Code Analysis and Manipulation (SCAM);2020-09

4. ShortCut;Proceedings of the 27th ACM Symposium on Operating Systems Principles;2019-10-27

5. Faster variational execution with transparent bytecode transformation;Proceedings of the ACM on Programming Languages;2018-10-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3