A Framework for Human-in-the-loop Monitoring of Concept-drift Detection in Event Log Stream
Author:
Affiliation:
1. Londrina State University, Londrina, Brazil
2. Universit`a degli Studi di Milano, Crema, Italy
3. Khalifa University, Abu Dhabi, Uae
Funder
Information and Communication Technology (ICT) Fund. ABU DHABI
Publisher
ACM Press
Reference30 articles.
1. Kristof Böhmer and Stefanie Rinderle-Ma. 2016. Automatic signature generation for anomaly detection in business process instance data. In International Workshop on Business Process Modeling, Development and Support. Springer, 196--211.
2. RP Jagadeesh Chandra Bose and Wil MP van der Aalst. 2010. Trace Alignment in Process Mining: Opportunities for Process Diagnostics. In BPM, Vol. 6336. Springer, 227--242.
3. RP Jagadeesh Chandra Bose, Wil MP van der Aalst, Indre Zliobaite, and Mykola Pechenizkiy. 2011. Handling concept drift in process mining. In International Conference on Advanced Information Systems Engineering. Springer, 391--405.
4. Markus Breunig, Hans-Peter Kriegel, Raymond Ng, and Jörg Sander. 1999. Opticsof: Identifying local outliers. Principles of data mining and knowledge discovery (1999), 262--270.
5. Andrea Burattin, Marta Cimitile, Fabrizio M Maggi, and Alessandro Sperduti. 2015. Online discovery of declarative process models from event streams. IEEE Transactions on Services Computing 8, 6 (2015), 833--846.
Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Machine learning in business process management: A systematic literature review;Expert Systems with Applications;2024-11
2. Revisiting the Transition Matrix-Based Concept Drift Approach: Improving the Detection Task Reliability Through Additional Experimentation;SN Computer Science;2024-01-10
3. Integrated detection and localization of concept drifts in process mining with batch and stream trace clustering support;Data & Knowledge Engineering;2024-01
4. Reinforcement Learning-Based Streaming Process Discovery Under Concept Drift;Lecture Notes in Computer Science;2024
5. Vector Representation for Business Process: Graph Embedding for Domain Knowledge Integration;2023 International Conference on Machine Learning and Applications (ICMLA);2023-12-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3