Affiliation:
1. Sun Yat-sen University, Guangzhou, China
Funder
National Science Foundation of China
Guangzhou Cooperative and Creative Key
Guangdong Province Frontier and Key Technology Innovative
Guangzhou Science and Technology Creative Key
Ministry of Science and Technology of China
Guangdong Province Applied Science and Technology Research
Reference19 articles.
1. Yu, L. (2009). Research and application of text feature extraction technology documents. (Doctoral dissertation, Beijing University of Posts and Telecommunications).
2. K. Premalatha, & A.M. Natarajan. (2010). A literature review on document clustering. Information Technology Journal, 9(5).
3. Popova, S., Danilova, V., & Egorov, A. (2014). Clustering narrow-domain short texts using k-means, linguistic patterns and lsi. Communications in Computer & Information Science, 436, 66--77.
4. Pinto, D., & Rosso, P. (2011). A Self-enriching Methodology for Clustering Narrow Domain Short Texts. Oxford University Press.
5. Pinto, D., & Rosso, P. (2007). Clustering Narrow-Domain Short Texts by Using the Kullback-Leibler Distance. International Conference on Intelligent Text Processing and Computational Linguistics (Vol.4394, pp.611--622). Springer Berlin Heidelberg.
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献