DutyCon

Author:

Wang Xiaodong1,Wang Xiaorui1,Liu Liu1,Xing Guoliang2

Affiliation:

1. The Ohio State University, Columbus, OH

2. Michigan State University, East Lansing, MI

Abstract

It is well known that periodically putting nodes into sleep can effectively save energy in wireless sensor networks at the cost of increased communication delays. However, most existing work mainly focuses on the static sleep scheduling, which cannot guarantee the desired delay when the network conditions change dynamically. In many applications with user-specified end-to-end delay requirements, the duty cycle of every node should be tuned individually at runtime based on the network conditions to achieve the desired end-to-end delay guarantees and energy efficiency. In this article, we propose DutyCon, a control theory-based dynamic duty-cycle control approach. DutyCon decomposes the end-to-end delay guarantee problem into a set of single-hop delay guarantee problems along each data flow in the network. We then formulate the single-hop delay guarantee problem as a dynamic feedback control problem and design the controller rigorously, based on feedback control theory, for analytic assurance of control accuracy and system stability. DutyCon also features a queuing delay adaptation scheme that adapts the duty cycle of each node to unpredictable incoming packet rates, as well as a novel energy-balancing approach that extends the network lifetime by dynamically adjusting the delay requirement allocated to each hop. Our empirical results on a hardware testbed demonstrate that DutyCon can effectively achieve the desired trade-off between end-to-end delay and energy conservation. Extensive simulation results also show that DutyCon outperforms two baseline sleep scheduling protocols by having more energy savings while meeting the end-to-end delay requirements.

Funder

Office of Naval Research

Division of Computer and Network Systems

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference34 articles.

1. Feedback performance control in software services;Abdelzaher T. F.;IEEE Control Syst. Mag.,2003

2. X-MAC

3. Temporal properties of low power wireless links

4. Efficient Power Management Based on Application Timing Semantics for Wireless Sensor Networks

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3