The T-Complexity Costs of Error Correction for Control Flow in Quantum Computation

Author:

Yuan Charles1ORCID,Carbin Michael1ORCID

Affiliation:

1. Massachusetts Institute of Technology, Cambridge, USA

Abstract

Numerous quantum algorithms require the use of quantum error correction to overcome the intrinsic unreliability of physical qubits. However, quantum error correction imposes a unique performance bottleneck, known as T -complexity, that can make an implementation of an algorithm as a quantum program run more slowly than on idealized hardware. In this work, we identify that programming abstractions for control flow, such as the quantum if-statement, can introduce polynomial increases in the T -complexity of a program. If not mitigated, this slowdown can diminish the computational advantage of a quantum algorithm. To enable reasoning about the costs of control flow, we present a cost model that a developer can use to accurately analyze the T -complexity of a program under quantum error correction and pinpoint the sources of slowdown. To enable the mitigation of these costs, we present a set of program-level optimizations that a developer can use to rewrite a program to reduce its T -complexity, predict the T -complexity of the optimized program using the cost model, and then compile it to an efficient circuit via a straightforward strategy. We implement the program-level optimizations in Spire, an extension of the Tower quantum compiler. Using a set of 11 benchmark programs that use control flow, we empirically show that the cost model is accurate, and that Spire’s optimizations recover programs that are asymptotically efficient, meaning their runtime T -complexity under error correction is equal to their time complexity on idealized hardware. Our results show that optimizing a program before it is compiled to a circuit can yield better results than compiling the program to an inefficient circuit and then invoking a quantum circuit optimizer found in prior work. For our benchmarks, only 2 of 8 tested quantum circuit optimizers recover circuits with asymptotically efficient T -complexity. Compared to these 2 optimizers, Spire uses 54×–2400× less compile time.

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3