Unprecedented Code Change Automation: The Fusion of LLMs and Transformation by Example

Author:

Dilhara Malinda1ORCID,Bellur Abhiram1ORCID,Bryksin Timofey2ORCID,Dig Danny3ORCID

Affiliation:

1. University of Colorado, Boulder, USA

2. JetBrains Research, Limassol, Cyprus

3. JetBrains Research - University of Colorado, Boulder, USA

Abstract

Software developers often repeat the same code changes within a project or across different projects. These repetitive changes are known as “code change patterns” (CPATs). Automating CPATs is crucial to expedite the software development process. While current Transformation by Example (TBE) techniques can automate CPATs, they are limited by the quality and quantity of the provided input examples. Thus, they miss transforming code variations that do not have the exact syntax, data-, or control-flow of the provided input examples, despite being semantically similar. Large Language Models (LLMs), pre-trained on extensive source code datasets, offer a potential solution. Harnessing the capability of LLMs to generate semantically equivalent, yet previously unseen variants of the original CPAT could significantly increase the effectiveness of TBE systems. In this paper, we first discover best practices for harnessing LLMs to generate code variants that meet three criteria: correctness (semantic equivalence to the original CPAT), usefulness (reflecting what developers typically write), and applicability (aligning with the primary intent of the original CPAT). We then implement these practices in our tool PyCraft, which synergistically combines static code analysis, dynamic analysis, and LLM capabilities. By employing chain-of-thought reasoning, PyCraft generates variations of input examples and comprehensive test cases that identify correct variations with an F-measure of 96.6%. Our algorithm uses feedback iteration to expand the original input examples by an average factor of 58x. Using these richly generated examples, we inferred transformation rules and then automated these changes, resulting in an increase of up to 39x, with an average increase of 14x in target codes compared to a previous state-of-the-art tool that relies solely on static analysis. We submitted patches generated by PyCraft to a range of projects, notably esteemed ones like microsoft/DeepSpeed and IBM/inFairness. Their developers accepted and merged 83% the 86 CPAT instances submitted through 44 pull requests. This confirms the usefulness of these changes.

Funder

NSF

Publisher

Association for Computing Machinery (ACM)

Reference66 articles.

1. Google AI. 2023. Google Bard: An Early Experiment with Generative AI. https://ai.google/static/documents/google-about-bard.pdf

2. On the usage of pythonic idioms

3. Mining idioms from source code

4. Generic Patch Inference

5. Getafix: learning to fix bugs automatically

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3