Unicorn: A Unified Multi-Tasking Matching Model

Author:

Fan Ju1,Tu Jianhong1,Li Guoliang2,Wang Peng1,Du Xiaoyong1,Jia Xiaofeng3,Gao Song3,Tang Nan4

Affiliation:

1. Renmin University of China, Beijing, China

2. Tsinghua University, Beijing, China

3. Beijing Big Data Centre, Beijing, China

4. HKUST (GZ) / HKUST, Guangzhou, China

Abstract

Data matching, which decides whether two data elements (e.g., string, tuple, column, or knowledge graph entity) are the "same" (a.k.a. a match), is a key concept in data integration. The widely used practice is to build task-specific or even dataset-specific solutions, which are hard to generalize and disable the opportunities of knowledge sharing that can be learned from different datasets and multiple tasks. In this paper, we propose Unicorn, a unified model for generally supporting common data matching tasks. Building such a unified model is challenging due to heterogeneous formats of input data elements and various matching semantics of multiple tasks. To address the challenges, Unicorn employs one generic Encoder that converts any pair of data elements (a, b) into a learned representation, and uses a Matcher, which is a binary classifier, to decide whether a matches b. To align matching semantics of multiple tasks, Unicorn adopts a mixture-of-experts model that enhances the learned representation into a better representation. We conduct extensive experiments using 20 datasets on 7 well-studied data matching tasks, and find that our unified model can achieve better performance on most tasks and on average, compared with the state-of-the-art specific models trained for ad-hoc tasks and datasets separately. Moreover, Unicorn can also well serve new matching tasks with zero-shot learning.

Publisher

Association for Computing Machinery (ACM)

Reference43 articles.

1. T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural information processing systems, 33:1877--1901, 2020.

2. J. Chen, E. Jim´enez-Ruiz, I. Horrocks, and C. Sutton. Learning semantic annotations for tabular data. arXiv preprint arXiv:1906.00781, 2019.

3. Z. Chen, Z. Gu, L. Cao, J. Fan, S. Madden, and N. Tang. Symphony: Towards natural language query answering over multi-modal data lakes. In 2023 Conference on Innovative Data Systems Research (CIDR), 2023.

4. Palm: Scaling language modeling with pathways;Chowdhery A.;J. Mach. Learn. Res.,2023

5. V. Christophides, V. Efthymiou, T. Palpanas, G. Papadakis, and K. Stefanidis. An overview of end-to-end entity resolution for big data. ACM Computing Surveys (CSUR), 53(6):1--42, 2020.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3