Interpretable Data-Based Explanations for Fairness Debugging

Author:

Pradhan Romila1,Zhu Jiongli2,Glavic Boris3,Salimi Babak2

Affiliation:

1. Purdue University, West Lafayette, IN, USA

2. University of California, San Diego, La Jolla, CA, USA

3. Illinois Institute of Technology, Chicago, IL, USA

Funder

NSF

Publisher

ACM

Reference99 articles.

1. NYPD stop , question and frisk data. https://www1.nyc.gov/site/nypd/stats/reports-analysis/stopfrisk.page. [Online ; accessed 19- October - 2021 ]. NYPD stop, question and frisk data. https://www1.nyc.gov/site/nypd/stats/reports-analysis/stopfrisk.page. [Online; accessed 19-October-2021].

2. Stop-and-frisk in the de blasio era. https://www.nyclu.org/en/publications/stop-and-frisk-de-blasio-era-2019. [Online ; accessed 19- October - 2021 ]. Stop-and-frisk in the de blasio era. https://www.nyclu.org/en/publications/stop-and-frisk-de-blasio-era-2019. [Online; accessed 19-October-2021].

3. Housing department slaps facebook with discrimination charge. https://www.npr.org/2019/03/28/707614254/hud-slaps-facebook-with-housing-discrimination-charge , 2019 . Housing department slaps facebook with discrimination charge. https://www.npr.org/2019/03/28/707614254/hud-slaps-facebook-with-housing-discrimination-charge, 2019.

4. Self-driving cars more likely to hit blacks. https://www.technologyreview.com/2019/03/01/136808/self-driving-cars-are-coming-but-accidents-may-not-be-evenly-distributed/ , 2019 . Self-driving cars more likely to hit blacks. https://www.technologyreview.com/2019/03/01/136808/self-driving-cars-are-coming-but-accidents-may-not-be-evenly-distributed/, 2019.

5. Kjersti Aas , Martin Jullum , and Anders Løland . Explaining individual predictions when features are dependent: More accurate approximations to shapley values. arXiv preprint arXiv:1903.10464 , 2019 . Kjersti Aas, Martin Jullum, and Anders Løland. Explaining individual predictions when features are dependent: More accurate approximations to shapley values. arXiv preprint arXiv:1903.10464, 2019.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mutual Information-Based Counterfactuals for Fair Graph Neural Networks;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

2. IDE: A System for Iterative Mislabel Detection;Companion of the 2024 International Conference on Management of Data;2024-06-09

3. Towards Interactively Improving ML Data Preparation Code via "Shadow Pipelines";Proceedings of the Eighth Workshop on Data Management for End-to-End Machine Learning;2024-06-09

4. A Critical Survey on Fairness Benefits of Explainable AI;The 2024 ACM Conference on Fairness, Accountability, and Transparency;2024-06-03

5. Counterfactual Explanation at Will, with Zero Privacy Leakage;Proceedings of the ACM on Management of Data;2024-05-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3