Random sampling for histogram construction

Author:

Chaudhuri Surajit1,Motwani Rajeev2,Narasayya Vivek1

Affiliation:

1. Microsoft Research

2. Stanford University

Abstract

Random sampling is a standard technique for constructing (approximate) histograms for query optimization. However, any real implementation in commercial products requires solving the hard problem of determining “How much sampling is enough?” We address this critical question in the context of equi-height histograms used in many commercial products, including Microsoft SQL Server. We introduce a conservative error metric capturing the intuition that for an approximate histogram to have low error, the error must be small in all regions of the histogram. We then present a result establishing an optimal bound on the amount of sampling required for pre-specified error bounds. We also describe an adaptive page sampling algorithm which achieves greater efficiency by using all values in a sampled page but adjusts the amount of sampling depending on clustering of values in pages. Next, we establish that the problem of estimating the number of distinct values is provably difficult , but propose a new error metric which has a reliable estimator and can still be exploited by query optimizers to influence the choice of execution plans. The algorithm for histogram construction was prototyped on Microsoft SQL Server 7.0 and we present experimental results showing that the adaptive algorithm accurately approximates the true histogram over different data distributions.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Reference29 articles.

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CDFRS: A scalable sampling approach for efficient big data analysis;Information Processing & Management;2024-07

2. Testing Closeness of Multivariate Distributions via Ramsey Theory;Proceedings of the 56th Annual ACM Symposium on Theory of Computing;2024-06-10

3. ROME: Robust Query Optimization via Parallel Multi-Plan Execution;Proceedings of the ACM on Management of Data;2024-05-29

4. Efficient Random Sampling from Very Large Databases;Lecture Notes in Computer Science;2024

5. On distributed data aggregation and the precision of approximate histograms;Journal of Parallel and Distributed Computing;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3