Efficient mid-query re-optimization of sub-optimal query execution plans

Author:

Kabra Navin1,DeWitt David J.1

Affiliation:

1. Computer Sciences Department, University of Wisconsin, Madison

Abstract

For a number of reasons, even the best query optimizers can very often produce sub-optimal query execution plans, leading to a significant degradation of performance. This is especially true in databases used for complex decision support queries and/or object-relational databases. In this paper, we describe an algorithm that detects sub-optimality of a query execution plan during query execution and attempts to correct the problem. The basic idea is to collect statistics at key points during the execution of a complex query. These statistics are then used to optimize the execution of the query, either by improving the resource allocation for that query, or by changing the execution plan for the remainder of the query. To ensure that this does not significantly slow down the normal execution of a query, the Query Optimizer carefully chooses what statistics to collect, when to collect them, and the circumstances under which to re-optimize the query. We describe an implementation of this algorithm in the Paradise Database System, and we report on performance studies, which indicate that this can result in significant improvements in the performance of complex queries.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FlexpushdownDB: rethinking computation pushdown for cloud OLAP DBMSs;The VLDB Journal;2024-07-10

2. Identifying the Root Causes of DBMS Suboptimality;ACM Transactions on Database Systems;2024-02-28

3. Optimism and Pessimism in Database Query Optimisation;2024 IEEE 18th International Conference on Semantic Computing (ICSC);2024-02-05

4. POLAR: Adaptive and Non-invasive Join Order Selection via Plans of Least Resistance;Proceedings of the VLDB Endowment;2024-02

5. PilotScope: Steering Databases with Machine Learning Drivers;Proceedings of the VLDB Endowment;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3