Integrating association rule mining with relational database systems

Author:

Sarawagi Sunita1,Thomas Shiby2,Agrawal Rakesh1

Affiliation:

1. IBM Almaden Research Center, 650 Harry Road, San Jose, CA

2. Dept. of Computer & Information Science & Engineering, University of Florida, Gainesville and IBM Almaden Research Center, 650 Harry Road, San Jose, CA

Abstract

Data mining on large data warehouses is becoming increasingly important. In support of this trend, we consider a spectrum of architectural alternatives for coupling mining with database systems. These alternatives include: loose-coupling through a SQL cursor interface; encapsulation of a mining algorithm in a stored procedure; caching the data to a file system on-the-fly and mining; tight-coupling using primarily user-defined functions; and SQL implementations for processing in the DBMS. We comprehensively study the option of expressing the mining algorithm in the form of SQL queries using Association rule mining as a case in point. We consider four options in SQL-92 and six options in SQL enhanced with object-relational extensions (SQL-OR). Our evaluation of the different architectural alternatives shows that from a performance perspective, the Cache-Mine option is superior, although the performance of the SQL-OR option is within a factor of two. Both the Cache-Mine and the SQL-OR approaches incur a higher storage penalty than the loose-coupling approach which performance-wise is a factor of 3 to 4 worse than Cache-Mine. The SQL-92 implementations were too slow to qualify as a competitive option. We also compare these alternatives on the basis of qualitative factors like automatic parallelization, development ease, portability and inter-operability.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Color Analysis of Brocade from the 4th to 8th Centuries Driven by Image-Based Matching Network Modeling;Applied Sciences;2024-09-03

2. InferDB: In-Database Machine Learning Inference Using Indexes;Proceedings of the VLDB Endowment;2024-04

3. Ontological Representation of Medical Decision Support System using Machine Learning Classifiers;2023 4th IEEE Global Conference for Advancement in Technology (GCAT);2023-10-06

4. Non-knowledge Based Decision Support System;Proceedings of Third International Conference on Sustainable Expert Systems;2023

5. Semantic and Efficient Symbolic Learning over Knowledge Graphs;Lecture Notes in Computer Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3