Blockchain-based Data Sharing System for Sensing-as-a-Service in Smart Cities

Author:

Lin Chao1,He Debiao1,Zeadally Sherali2,Huang Xinyi3,Liu Zhe4

Affiliation:

1. School of Cyber Science and Engineering, Wuhan University, China and Cyberspace Security Research Center, Peng Cheng Laboratory, China

2. College of Communication and Information, University of Kentucky, USA

3. College of Mathematics and Informatics, Fujian Normal University, China and Fujian Provincial Key Laboratory of Network Security and Cryptology, China

4. College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, China

Abstract

The sensing-as-a-service (SaaS) model has been explored to address the challenge of intractability of managing a large number of sensors faced by future smart cities. However, how to effectively share sensor data without compromising confidentiality, privacy protection, and fair trading without third parties is one of critical issues that must be solved in the SaaS in smart cities. While blockchain shows promise in solving these issues, the existing blockchain-based data sharing (BBDS) systems are difficult to apply to SaaS in smart cities because of many unresolved issues such as requiring a customized blockchain, huge storage, communication and computation costs, and dependence on a third party to achieve fair trading. We propose a BBDS system model with its security requirements before we present a concrete construction by combining -protocol, Paillier encryption scheme, and any secure symmetrical encryption and signature schemes. To demonstrate the utility of our proposed BBDS system, we present a security analysis and compare our system with other solutions. We implement the prototype in Remix to analyze the gas cost, and we conduct experiments to evaluate the communication and computation costs of the BBDS system using symmetric encryption (advanced encryption standard (AES)) and a signature scheme (elliptic curve digital signature algorithm (ECDSA)).

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference41 articles.

1. New and efficient conditional e-payment systems with transferability;Chen Xiaofeng;Fut. Gen. Comput. Syst.,2014

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3