Optimus-CC: Efficient Large NLP Model Training with 3D Parallelism Aware Communication Compression

Author:

Song Jaeyong1,Yim Jinkyu2,Jung Jaewon1,Jang Hongsun2,Kim Hyung-Jin3,Kim Youngsok1,Lee Jinho2

Affiliation:

1. Yonsei University, South Korea

2. Seoul National University, South Korea

3. Samsung Electronics, South Korea

Publisher

ACM

Reference89 articles.

1. Saurabh Agarwal Hongyi Wang Shivaram Venkataraman and Dimitris Papailiopoulos. 2022. On the Utility of Gradient Compression in Distributed Training Systems. In MLSys. Saurabh Agarwal Hongyi Wang Shivaram Venkataraman and Dimitris Papailiopoulos. 2022. On the Utility of Gradient Compression in Distributed Training Systems. In MLSys.

2. Takuya Akiba Shuji Suzuki and Keisuke Fukuda. 2017. Extremely Large Minibatch SGD: Training Resnet-50 on Imagenet in 15 Minutes. arXiv preprint arXiv:1711.04325. Takuya Akiba Shuji Suzuki and Keisuke Fukuda. 2017. Extremely Large Minibatch SGD: Training Resnet-50 on Imagenet in 15 Minutes. arXiv preprint arXiv:1711.04325.

3. Aida Amini Saadia Gabriel Shanchuan Lin Rik Koncel-Kedziorski Yejin Choi and Hannaneh Hajishirzi. 2019. MathQA: Towards Interpretable Math Word Problem Solving with Operation-Based Formalisms. In NAACL. 2357–2367. Aida Amini Saadia Gabriel Shanchuan Lin Rik Koncel-Kedziorski Yejin Choi and Hannaneh Hajishirzi. 2019. MathQA: Towards Interpretable Math Word Problem Solving with Operation-Based Formalisms. In NAACL. 2357–2367.

4. Debraj Basu , Deepesh Data , Can Karakus, and Suhas Diggavi. 2019 . Qsparse-local-SGD: Distributed SGD with Quantization, Sparsification and Local Computations. In NeurIPS. Debraj Basu, Deepesh Data, Can Karakus, and Suhas Diggavi. 2019. Qsparse-local-SGD: Distributed SGD with Quantization, Sparsification and Local Computations. In NeurIPS.

5. Jeremy Bernstein Yu-Xiang Wang Kamyar Azizzadenesheli and Anima Anandkumar. 2018. signSGD: compressed optimisation for non-convex problems. In ICML. Jeremy Bernstein Yu-Xiang Wang Kamyar Azizzadenesheli and Anima Anandkumar. 2018. signSGD: compressed optimisation for non-convex problems. In ICML.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Scaling Down to Scale Up: A Cost-Benefit Analysis of Replacing OpenAI's LLM with Open Source SLMs in Production;2024 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS);2024-05-05

2. PrimePar: Efficient Spatial-temporal Tensor Partitioning for Large Transformer Model Training;Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3;2024-04-27

3. ScheMoE: An Extensible Mixture-of-Experts Distributed Training System with Tasks Scheduling;Proceedings of the Nineteenth European Conference on Computer Systems;2024-04-22

4. SoCFlow: Efficient and Scalable DNN Training on SoC-Clustered Edge Servers;Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 1;2024-04-17

5. Smart-Infinity: Fast Large Language Model Training using Near-Storage Processing on a Real System;2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA);2024-03-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3