The Impact of Bio-Inspired Approaches Toward the Advancement of Face Recognition

Author:

Alsalibi Bisan1,Venkat Ibrahim1,Subramanian K.G.1,Lutfi Syaheerah Lebai1,Wilde Philippe De2

Affiliation:

1. Universiti Sains Malaysia, Penang, Malaysia

2. University of Kent

Abstract

An increased number of bio-inspired face recognition systems have emerged in recent decades owing to their intelligent problem-solving ability, flexibility, scalability, and adaptive nature. Hence, this survey aims to present a detailed overview of bio-inspired approaches pertaining to the advancement of face recognition. Based on a well-classified taxonomy, relevant bio-inspired techniques and their merits and demerits in countering potential problems vital to face recognition are analyzed. A synthesis of various approaches in terms of key governing principles and their associated performance analysis are systematically portrayed. Finally, some intuitive future directions are suggested on how bio-inspired approaches can contribute to the advancement of face biometrics in the years to come.

Funder

ERGS

short-term

Ministry of Education, Malaysia

RUI

Universiti Sains Malaysia

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Reference185 articles.

1. 1992. AT&T Laboratories Cambridge. ORL Face Database. Retrieved from http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html. 1992. AT&T Laboratories Cambridge. ORL Face Database. Retrieved from http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.

2. 1996. Center for Biological and Computational Learning. MIT CBCL Face Database 1. Retrieved from http://www.ai.mit.edu/projects/cbcl. 1996. Center for Biological and Computational Learning. MIT CBCL Face Database 1. Retrieved from http://www.ai.mit.edu/projects/cbcl.

3. 1998. The University of Sheffield. The umist face database. Retrieved from http://www.sheffield.ac.uk/eee/research/iel/research/face. 1998. The University of Sheffield. The umist face database. Retrieved from http://www.sheffield.ac.uk/eee/research/iel/research/face.

4. 2D and 3D face recognition: A survey

5. Rotation Invariant Face Recognition Based on Hybrid LPT/DCT Features;Rehab;International Journal of Intelligent Systems and Technologies,2008

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3