Efficient Parallel Random Sampling—Vectorized, Cache-Efficient, and Online

Author:

Sanders Peter1,Lamm Sebastian1,Hübschle-Schneider Lorenz1ORCID,Schrade Emanuel1,Dachsbacher Carsten1

Affiliation:

1. Karlsruhe Institute of Technology, Karlsruhe, Germany

Abstract

We consider the problem of sampling n numbers from the range { 1,… , N } without replacement on modern architectures. The main result is a simple divide-and-conquer scheme that makes sequential algorithms more cache efficient and leads to a parallel algorithm running in expected time O ( n / p +log p ) on p processors, i.e., scales to massively parallel machines even for moderate values of n . The amount of communication between the processors is very small (at most O (log p )) and independent of the sample size. We also discuss modifications needed for load balancing, online sampling, sampling with replacement, Bernoulli sampling, and vectorization on SIMD units or GPUs.

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Hybrid Swarm Intelligence Algorithm for Compute Cluster Selection Using Bee Colony Optimization with Random Sampling;2024 IEEE International Conference on Omni-layer Intelligent Systems (COINS);2024-07-29

2. BIGQA: Declarative Big Data Quality Assessment;Journal of Data and Information Quality;2023-08-22

3. Survey of Distributed Computing Frameworks for Supporting Big Data Analysis;Big Data Mining and Analytics;2023-06

4. Stable and semi-stable sampling approaches for continuously used samples;Knowledge and Information Systems;2023-04-03

5. List and shelf schedules for independent parallel tasks to minimize the energy consumption with discrete or continuous speeds;Journal of Parallel and Distributed Computing;2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3