TOC

Author:

Shu Yuanchao1,Cheng Peng1,Gu Yu2,Chen Jiming1,He Tian3

Affiliation:

1. Zhejiang University

2. Singapore University of Technology and Design

3. University of Minnesota

Abstract

The wireless rechargeable sensor network is a promising platform for long-term applications such as inventory management, supply chain monitoring, and so on. For these applications, sensor localization is one of the most fundamental challenges. Different from a traditional sensor node, a wireless rechargeable sensor has to be charged above a voltage level by the wireless charger in order to support its sensing, computation, and communication operations. In this work, we consider the scenario where a mobile charger stops at different positions to charge sensors and propose a novel localization design that utilizes the unique Time of Charge (TOC) sequences among wireless rechargeable sensors. Specifically, we introduce two efficient region dividing methods, Internode Division and Interarea Division , to exploit TOC differences from both temporal and spatial dimensions to localize individual sensor nodes. To further optimize the system performance, we introduce both an optimal charger stop planning algorithm for the single-sensor case and a suboptimal charger stop planning algorithm for the generic multisensor scenario with a provable performance bound. We have extensively evaluated our design by both testbed experiments and large-scale simulations. The experiment and simulation results show that by as less as five stops, our design can achieve sub-meter accuracy and the performance is robust under various system conditions.

Funder

National Program for Special Support of Top-Notch Young Professionals

111 Program

NSFC

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SuperSight: Sub-cm NLOS Localization for mmWave Backscatter;Proceedings of the 22nd Annual International Conference on Mobile Systems, Applications and Services;2024-06-03

2. A Novel DV-HOP and APIT Localization Algorithm with BAT-SA Algorithm;RAiSE-2023;2023-12-20

3. Genetic algorithm‐based partial charging schedule of rechargeable sensor networks;International Journal of Communication Systems;2023-03-21

4. Battery-Free Wireless Sensor Networks: A Comprehensive Survey;IEEE Internet of Things Journal;2023-03-15

5. A novel efficient on demand charging schedule for rechargeable wireless sensor networks;Computing;2023-03-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3