Detecting Dravidian Offensive Posts in MIoT: A Hybrid Deep Learning Framework

Author:

Kumar Abhinav1,Saumya Sunil2,Singh Ashish3

Affiliation:

1. Department of Computer Science and Engineering, Motilal Nehru National Institute of Technology Allahabad, India

2. Department of Computer Science and Engineering, Indian Institute of Information Technology Dharwad, India

3. School of Computer Engineering, KIIT University, India

Abstract

Hate speech and Offensive Posts (OP) detection on Smart Multimedia Internet of Things (MIoT) have been an active issue for researchers. MIoT media texts in non-native English-speaking countries are often code-mixed or script mixed/switched. This paper proposes an ensemble-based Deep Learning (DL) framework comprised of a Convolutional Neural Network (CNN) and a Dense Neural Network (DNN) for identifying hate and OP in Malayalam Code-Mixed (MCM), Tamil Code-Mixed (TCM), and Malayalam Script-Mixed (MSM) MIoT media postings. Word-level and character-level features are utilized in the convolutional neural network. In contrast, the dense neural network uses character-level Term Frequency-Inverse Document Frequency (TF-IDF) features. The inclusion of character-level features in the proposed ensemble framework resulted in state-of-the-art performance for TCM and MCM datasets, with weighted F 1 -score of 0.91 and 0.78, respectively, and comparable performance for MSM posts, with a weighted F 1 -score of 0.95.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference67 articles.

1. Twitter spam account detection based on clustering and classification methods

2. Swati Agarwal and Ashish Sureka. 2017. Characterizing Linguistic Attributes for Automatic Classification of Intent Based Racist/Radicalized Posts on Tumblr Micro-Blogging Website. https://doi.org/10.48550/ARXIV.1701.04931 10.48550/ARXIV.1701.04931

3. Swati Agarwal and Ashish Sureka. 2017. Characterizing Linguistic Attributes for Automatic Classification of Intent Based Racist/Radicalized Posts on Tumblr Micro-Blogging Website. https://doi.org/10.48550/ARXIV.1701.04931

4. Voice pathology detection and classification by adopting online sequential extreme learning machine;Al-Dhief Fahad Taha;IEEE Access,2021

5. Fahad Taha AL- Dhief , Nurul Mu’azzah Abdul Latiff , Nik Noordini Nik Abd Malik , Naseer Sabri , Marina Mat Baki , Musatafa Abbas Abbood Albadr , Aymen Fadhil Abbas , Yaqdhan Mahmood Hussein , and Mazin Abed Mohammed . 2020 . Voice pathology detection using machine learning technique . In 2020 IEEE 5th International Symposium on Telecommunication Technologies (ISTT). IEEE, 99–104 . Fahad Taha AL-Dhief, Nurul Mu’azzah Abdul Latiff, Nik Noordini Nik Abd Malik, Naseer Sabri, Marina Mat Baki, Musatafa Abbas Abbood Albadr, Aymen Fadhil Abbas, Yaqdhan Mahmood Hussein, and Mazin Abed Mohammed. 2020. Voice pathology detection using machine learning technique. In 2020 IEEE 5th International Symposium on Telecommunication Technologies (ISTT). IEEE, 99–104.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Filtering offensive language from multilingual social media contents: A deep learning approach;Engineering Applications of Artificial Intelligence;2024-07

2. Explainable Deep Learning for Mental Health Detection from English and Arabic Social Media Posts;ACM Transactions on Asian and Low-Resource Language Information Processing;2023-11-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3