AdaptNet: Policy Adaptation for Physics-Based Character Control

Author:

Xu Pei1ORCID,Xie Kaixiang2ORCID,Andrews Sheldon3ORCID,Kry Paul G.2ORCID,Neff Michael4ORCID,Mcguire Morgan5ORCID,Karamouzas Ioannis6ORCID,Zordan Victor7ORCID

Affiliation:

1. Clemson University, USA and Roblox, USA

2. McGill University, Canada

3. École de Technologie Supérieure, Canada and Roblox, USA

4. University of California, Davis, USA

5. Roblox, USA and University of Waterloo, Canada

6. University of California, Riverside, USA

7. Roblox, USA and Clemson University, USA

Abstract

Motivated by humans' ability to adapt skills in the learning of new ones, this paper presents AdaptNet, an approach for modifying the latent space of existing policies to allow new behaviors to be quickly learned from like tasks in comparison to learning from scratch. Building on top of a given reinforcement learning controller, AdaptNet uses a two-tier hierarchy that augments the original state embedding to support modest changes in a behavior and further modifies the policy network layers to make more substantive changes. The technique is shown to be effective for adapting existing physics-based controllers to a wide range of new styles for locomotion, new task targets, changes in character morphology and extensive changes in environment. Furthermore, it exhibits significant increase in learning efficiency, as indicated by greatly reduced training times when compared to training from scratch or using other approaches that modify existing policies. Code is available at https://motion-lab.github.io/AdaptNet .

Funder

NSERC

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference79 articles.

1. R. Abdal , Y. Qin , and P. Wonka . 2019. Image2StyleGAN: How to Embed Images Into the StyleGAN Latent Space? . In Proc. of the IEEE/CVF Int. Conf. on Computer Vision. 4432--4441 . R. Abdal, Y. Qin, and P. Wonka. 2019. Image2StyleGAN: How to Embed Images Into the StyleGAN Latent Space?. In Proc. of the IEEE/CVF Int. Conf. on Computer Vision. 4432--4441.

2. Unpaired motion style transfer from video to animation

3. A. Aghajanyan S. Gupta and L. Zettlemoyer. 2021. Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning. In 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). 7319--7328. A. Aghajanyan S. Gupta and L. Zettlemoyer. 2021. Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning. In 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). 7319--7328.

4. F. Alet , T. Lozano-Perez , and L. P. Kaelbling . 2018. Modular meta-learning . In Conf. on Robot Learning (Proc. of Machine Learning Research , Vol. 87). 856-- 868 . F. Alet, T. Lozano-Perez, and L. P. Kaelbling. 2018. Modular meta-learning. In Conf. on Robot Learning (Proc. of Machine Learning Research, Vol. 87). 856--868.

5. M. Andrychowicz M. Denil S. G. Colmenarejo M. W. Hoffman D. Pfau T. Schaul B. Shillingford and N. de Freitas. 2016. Learning to Learn by Gradient Descent by Gradient Descent. In Neural Information Processing Systems. 3988--3996. M. Andrychowicz M. Denil S. G. Colmenarejo M. W. Hoffman D. Pfau T. Schaul B. Shillingford and N. de Freitas. 2016. Learning to Learn by Gradient Descent by Gradient Descent. In Neural Information Processing Systems. 3988--3996.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3