Algebras and coalgebras in the light affine Lambda calculus

Author:

Gaboardi Marco1,Péchoux Romain2

Affiliation:

1. University of Dundee, UK

2. University of Lorraine, France

Abstract

Algebra and coalgebra are widely used to model data types in functional programming languages and proof assistants. Their use permits to better structure the computations and also to enhance the expressivity of a language or of a proof system. Interestingly, parametric polymorphism à la System F provides a way to encode algebras and coalgebras in strongly normalizing languages without losing the good logical properties of the calculus. Even if these encodings are sometimes unsatisfying because they provide only limited forms of algebras and coalgebras, they give insights on the expressivity of System F in terms of functions that we can program in it. With the goal of contributing to a better understanding of the expressivity of Implicit Computational Complexity systems, we study the problem of defining algebras and coalgebras in the Light Affine Lambda Calculus, a system characterizing the complexity class FPTIME. This system limits the computational complexity of programs but it also limits the ways we can use parametric polymorphism, and in general the way we can write our programs. We show here that while the restrictions imposed by the Light Affine Lambda Calculus pose some issues to the standard System F encodings, they still permit to encode some form of algebra and coalgebra. Using the algebra encoding one can define in the Light Affine Lambda Calculus the traditional inductive types. Unfortunately, the corresponding coalgebra encoding permits only a very limited form of coinductive data types. To extend this class we study an extension of the Light Affine Lambda Calculus by distributive laws for the modality §. This extension has been discussed but not studied before.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Polynomial Time over the Reals with Parsimony;Functional and Logic Programming;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3