Enhancing Response Predictions with a Joint Gaussian Process Model for Stochastic Simulation Models

Author:

Wang Songhao1,Ng Szu hui1

Affiliation:

1. National University of Singapore, Singapore

Abstract

The stochastic Gaussian process model has been widely used in stochastic simulation metamodeling. In practice, the performance of this model can be largely affected by the noise in the observations. In this article, we propose an approach to mitigate the impact of the noisy observations by jointly modeling the response of interest with a correlated but less-noisy auxiliary response. The main idea is to leverage on and learn from the correlated and more accurate response to improve the prediction. To achieve this, we extend the existing deterministic multi-response model for stochastic simulation to jointly model the two responses, use some simplified examples to show the benefit of the proposed model, and investigate the input estimation of this model. Quantile prediction is used to illustrate the efficiency of the proposed approach by jointly modeling it with the expectation, which typically has a less noisy estimator compared with that of the quantile. Several numerical examples are then conducted, and the results show that the joint model can provide better performance. These promising results illustrate the potential of this joint model especially in situations where the response of interest is much noisier or when observations are scarce. We further propose a two-stage design approach based on the multi-response model to more efficiently utilize limited computing budget to improve predictions. We also see from these designs the benefits of the joint model, where the more accurate auxiliary response observations can be used to improve the response of interest.

Funder

Ministry of Education, Singapore

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,Modeling and Simulation

Reference41 articles.

1. Computationally efficient convolved multiple output Gaussian processes;Álvarez Mauricio A.;J. Mach. Learn. Res. 12,2011

2. Stochastic Kriging for Simulation Metamodeling

3. A Note on Quantiles in Large Samples

4. Steady-state quantile parameter estimation: An empirical comparison of stochastic kriging and quantile regression

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3