Latent semantic indexing (LSI) fails for TREC collections

Author:

Atreya Avinash1,Elkan Charles1

Affiliation:

1. University of California, San Diego

Abstract

The aim of latent semantic indexing (LSI) is to uncover the relationships between terms, hidden concepts, and documents. LSI uses the matrix factorization technique known as singular value decomposition (SVD). In this paper, we apply LSI to standard benchmark collections. We find that LSI yields poor retrieval accuracy on the TREC 2, 7, 8, and 2004 collections. We believe that the negative result is robust, because we try more LSI variants than any previous work. First, we show that using Okapi BM25 weights for terms in documents improves the performance of LSI. Second, we derive novel scoring methods that implement the ideas of query expansion and score regularization in the LSI framework. Third, we show how to combine the BM25 method with LSI methods. All proposed methods are evaluated experimentally on the four TREC collections mentioned above. The experiments show that the new variants of LSI improve upon previous LSI methods. Nevertheless, no way of using LSI achieves a worthwhile improvement in retrieval accuracy over BM25.

Publisher

Association for Computing Machinery (ACM)

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Hierarchical Topical Modeling Approach for Recommending Repair of Quality Bugs;2023 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER);2023-03

2. Information Retrieval: Recent Advances and Beyond;IEEE Access;2023

3. Semantic Models for the First-Stage Retrieval: A Comprehensive Review;ACM Transactions on Information Systems;2022-03-24

4. A proposed conceptual framework for a representational approach to information retrieval;ACM SIGIR Forum;2021-12

5. Semantic Similarity of XML Documents Based on Structural and Content Analysis;Proceedings of the 2020 4th International Symposium on Computer Science and Intelligent Control;2020-11-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3