Confidence Intervals for Stochastic Arithmetic

Author:

Sohier Devan1,Castro Pablo De Oliveira1,Févotte François2,Lathuilière Bruno3,Petit Eric4,Jamond Olivier5

Affiliation:

1. Université Paris-Saclay, UVSQ, Li-PaRAD, Guyancourt, France

2. TriScale innov, Palaiseau, France

3. EDF R&D--PERICLES, Palaiseau, France

4. Intel Corp., Meudon, France

5. CEA, Gif sur Yvette, France

Abstract

Quantifying errors and losses due to the use of Floating-point (FP) calculations in industrial scientific computing codes is an important part of the Verification, Validation, and Uncertainty Quantification process. Stochastic Arithmetic is one way to model and estimate FP losses of accuracy, which scales well to large, industrial codes. It exists in different flavors, such as CESTAC or MCA, implemented in various tools such as CADNA, Verificarlo, or Verrou. These methodologies and tools are based on the idea that FP losses of accuracy can be modeled via randomness. Therefore, they share the same need to perform a statistical analysis of programs results to estimate the significance of the results. In this article, we propose a framework to perform a solid statistical analysis of Stochastic Arithmetic. This framework unifies all existing definitions of the number of significant digits (CESTAC and MCA), and also proposes a new quantity of interest: the number of digits contributing to the accuracy of the results. Sound confidence intervals are provided for all estimators, both in the case of normally distributed results, and in the general case. The use of this framework is demonstrated by two case studies of industrial codes: Europlexus and code_aster.

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Reference43 articles.

1. André Adobes. 2016. Code_Aster: SDNL112. Retrieved from https://www.code-aster.org/V2/doc/v14/en/man_v/v5/v5.02.112.pdf. André Adobes. 2016. Code_Aster: SDNL112. Retrieved from https://www.code-aster.org/V2/doc/v14/en/man_v/v5/v5.02.112.pdf.

2. Wave Equation Numerical Resolution: A Comprehensive Mechanized Proof of a C Program

3. Combining Coq and Gappa for Certifying Floating-Point Programs

4. Flocq: A Unified Library for Proving Floating-Point Algorithms in Coq

5. Lawrence D. Brown T. Tony Cai and Anirban DasGupta. 2001. Interval estimation for a binomial proportion. Stat. Sci. (2001) 101--117. Lawrence D. Brown T. Tony Cai and Anirban DasGupta. 2001. Interval estimation for a binomial proportion. Stat. Sci. (2001) 101--117.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical stability of DeepGOPlus inference;PLOS ONE;2024-01-29

2. Stochastic Rounding Variance and Probabilistic Bounds: A New Approach;SIAM Journal on Scientific Computing;2023-10-05

3. Numerical Uncertainty of Convolutional Neural Networks Inference for Structural Brain MRI Analysis;Uncertainty for Safe Utilization of Machine Learning in Medical Imaging;2023

4. PyTracer: Automatically Profiling Numerical Instabilities in Python;IEEE Transactions on Computers;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3