An Average-Case Depth Hierarchy Theorem for Boolean Circuits

Author:

Håstad Johan1,Rossman Benjamin2,Servedio Rocco A.3,Tan Li-Yang4

Affiliation:

1. KTH Stockholm, Stockholm, Sweden

2. University of Toronto, Ontario, Canada

3. Columbia University, New York, U.S.A

4. Toyota Technological Institute at Chicago, IL, U.S.A

Abstract

We prove an average-case depth hierarchy theorem for Boolean circuits over the standard basis of AND, OR, and NOT gates. Our hierarchy theorem says that for every d ≥ 2, there is an explicit n -variable Boolean function f , computed by a linear-size depth- d formula, which is such that any depth-( d −1) circuit that agrees with f on (1/2 + o n (1)) fraction of all inputs must have size exp( n Ω (1/d) ). This answers an open question posed by Håstad in his Ph.D. thesis (Håstad 1986b). Our average-case depth hierarchy theorem implies that the polynomial hierarchy is infinite relative to a random oracle with probability 1, confirming a conjecture of Håstad (1986a), Cai (1986), and Babai (1987). We also use our result to show that there is no “approximate converse” to the results of Linial, Mansour, Nisan (Linial et al. 1993) and (Boppana 1997) on the total influence of bounded-depth circuits. A key ingredient in our proof is a notion of random projections which generalize random restrictions.

Funder

NSF

NSERC

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Reference62 articles.

1. Scott Aaronson. The Complexity Zoo. Retrieved from http://cse.unl.edu/∼cbourke/latex/ComplexityZoo.pdf. Scott Aaronson. The Complexity Zoo. Retrieved from http://cse.unl.edu/∼cbourke/latex/ComplexityZoo.pdf.

2. BQP and the polynomial hierarchy

3. More Applications of the Polynomial Method to Algorithm Design

4. ∑11-Formulae on finite structures

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Depth- Threshold Circuits vs. Depth-(+1) AND-OR Trees;Proceedings of the 55th Annual ACM Symposium on Theory of Computing;2023-06-02

2. Shrinkage under Random Projections, and Cubic Formula Lower Bounds for AC°;Theory of Computing;2023

3. Superpolynomial Lower Bounds Against Low-Depth Algebraic Circuits;2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS);2022-02

4. Improved Pseudorandom Generators from Peudorandom Multi-switching Lemmas;Theory of Computing;2022

5. Reflections on Proof Complexity and Counting Principles;Outstanding Contributions to Logic;2021-09-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3