Co-Optimization of Design and Fabrication Plans for Carpentry

Author:

Zhao Haisen1ORCID,Willsey Max2,Zhu Amy2,Nandi Chandrakana2,Tatlock Zachary2,Solomon Justin3,Schulz Adriana2

Affiliation:

1. University of Washington and Shandong University and IST Austria, Seattle, WA

2. University of Washington, Seattle, WA

3. Massachusetts Institute of Technology, Cambridge, MA

Abstract

Past work on optimizing fabrication plans given a carpentry design can provide Pareto-optimal plans trading off between material waste, fabrication time, precision, and other considerations. However, when developing fabrication plans, experts rarely restrict to a single design , instead considering families of design variations , sometimes adjusting designs to simplify fabrication. Jointly exploring the design and fabrication plan spaces for each design is intractable using current techniques. We present a new approach to jointly optimize design and fabrication plans for carpentered objects. To make this bi-level optimization tractable, we adapt recent work from program synthesis based on equality graphs (e-graphs), which encode sets of equivalent programs. Our insight is that subproblems within our bi-level problem share significant substructures. By representing both designs and fabrication plans in a new bag of parts (BOP) e-graph, we amortize the cost of optimizing design components shared among multiple candidates. Even using BOP e-graphs, the optimization space grows quickly in practice. Hence, we also show how a feedback-guided search strategy dubbed Iterative Contraction and Expansion on E-graphs (ICEE) can keep the size of the e-graph manageable and direct the search towards promising candidates. We illustrate the advantages of our pipeline through examples from the carpentry domain.

Funder

National Science Foundation

Google faculty award and the NSF China

Army Research Office

Air Force Office of Scientific Research

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FabHacks: Transform Everyday Objects into Home Hacks Leveraging a Solver-aided DSL;Proceedings of the 9th ACM Symposium on Computational Fabrication;2024-07-07

2. Toward Sub-Gram Helicopters: Designing a Miniaturized Flybar for Passive Stability;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

3. Improving Unsupervised Visual Program Inference with Code Rewriting Families;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

4. Semantics and Scheduling for Machine Knitting Compilers;ACM Transactions on Graphics;2023-07-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3