Bisimulation for Quantum Processes

Author:

Feng Yuan1,Duan Runyao1,Ying Mingsheng1

Affiliation:

1. University of Technology, Sydney, Australia, and Tsinghua University, China

Abstract

Quantum cryptographic systems have been commercially available, with a striking advantage over classical systems that their security and ability to detect the presence of eavesdropping are provable based on the principles of quantum mechanics. On the other hand, quantum protocol designers may commit more faults than classical protocol designers since human intuition is poorly adapted to the quantum world. To offer formal techniques for modeling and verification of quantum protocols, several quantum extensions of process algebra have been proposed. An important issue in quantum process algebra is to discover a quantum generalization of bisimulation preserved by various process constructs, in particular, parallel composition, where one of the major differences between classical and quantum systems, namely quantum entanglement, is present. Quite a few versions of bisimulation have been defined for quantum processes in the literature, but in the best case they are only proved to be preserved by parallel composition of purely quantum processes where no classical communication is involved. Many quantum cryptographic protocols, however, employ the LOCC (Local Operations and Classical Communication) scheme, where classical communication must be explicitly specified. So, a notion of bisimulation preserved by parallel composition in the circumstance of both classical and quantum communication is crucial for process algebra approach to verification of quantum cryptographic protocols. In this article we introduce novel notions of strong bisimulation and weak bisimulation for quantum processes, and prove that they are congruent with respect to various process algebra combinators including parallel composition even when both classical and quantum communication are present. We also establish some basic algebraic laws for these bisimulations. In particular, we show the uniqueness of the solutions to recursive equations of quantum processes, which proves useful in verifying complex quantum protocols. To capture the idea that a quantum process approximately implements its specification, and provide techniques and tools for approximate reasoning, a quantified version of strong bisimulation, which defines for each pair of quantum processes a bisimulation-based distance characterizing the extent to which they are strongly bisimilar, is also introduced.

Funder

Australian Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Model-Based Testing of Quantum Computations;Lecture Notes in Computer Science;2024-09-10

2. Encodability Criteria for Quantum Based Systems;Logical Methods in Computer Science;2024-04-30

3. Quantum Bisimilarity via Barbs and Contexts: Curbing the Power of Non-deterministic Observers;Proceedings of the ACM on Programming Languages;2024-01-05

4. Challenges for Quantum Software Engineering: An Industrial Application Scenario Perspective;Quantum Software;2024

5. References;Foundations of Quantum Programming;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3