1. Leman Akoglu , Hanghang Tong , and Danai Koutra . 2015. Graph based anomaly detection and description: a survey. Data mining and knowledge discovery 29 ( 2015 ), 626–688. Leman Akoglu, Hanghang Tong, and Danai Koutra. 2015. Graph based anomaly detection and description: a survey. Data mining and knowledge discovery 29 (2015), 626–688.
2. Markus M Breunig Hans-Peter Kriegel Raymond T Ng and Jörg Sander. 2000. LOF: identifying density-based local outliers. In SIGMOD. 93–104. Markus M Breunig Hans-Peter Kriegel Raymond T Ng and Jörg Sander. 2000. LOF: identifying density-based local outliers. In SIGMOD. 93–104.
3. Bo Chen , Jing Zhang , Xiaokang Zhang , Yuxiao Dong , Jian Song , Peng Zhang , Kaibo Xu , Evgeny Kharlamov , and Jie Tang . 2022 . GCCAD: Graph Contrastive Learning for Anomaly Detection . IEEE Transactions on Knowledge and Data Engineering ( 2022). Bo Chen, Jing Zhang, Xiaokang Zhang, Yuxiao Dong, Jian Song, Peng Zhang, Kaibo Xu, Evgeny Kharlamov, and Jie Tang. 2022. GCCAD: Graph Contrastive Learning for Anomaly Detection. IEEE Transactions on Knowledge and Data Engineering (2022).
4. Jinghui Chen , Saket Sathe , Charu Aggarwal , and Deepak Turaga . 2017. Outlier detection with autoencoder ensembles . In SDM. SIAM , 90–98. Jinghui Chen, Saket Sathe, Charu Aggarwal, and Deepak Turaga. 2017. Outlier detection with autoencoder ensembles. In SDM. SIAM, 90–98.
5. Jinyin Chen , Xueke Wang , and Xuanheng Xu. 2022. GC-LSTM: Graph convolution embedded LSTM for dynamic network link prediction. Applied Intelligence ( 2022 ), 1–16. Jinyin Chen, Xueke Wang, and Xuanheng Xu. 2022. GC-LSTM: Graph convolution embedded LSTM for dynamic network link prediction. Applied Intelligence (2022), 1–16.