Real-Time Anomaly Detection Framework for Many-Core Router through Machine-Learning Techniques

Author:

Kulkarni Amey1,Pino Youngok2,French Matthew2,Mohsenin Tinoosh1

Affiliation:

1. University of Maryland Baltimore County, Baltimore, MD

2. University of Southern California, Information Sciences Institute, Arlington, VA

Abstract

In this article, we propose a real-time anomaly detection framework for an NoC-based many-core architecture. We assume that processing cores and memories are safe and anomaly is included through a communication medium (i.e., router). The article targets three different attacks, namely, traffic diversion, route looping, and core address spoofing attacks. The attacks are detected by using machine-learning techniques. Comprehensive analysis on machine-learning algorithms suggests that Support Vector Machine (SVM) and K-Nearest Neighbor (K-NN) have better attack detection efficiency. It has been observed that both algorithms have accuracy in the range of 94% to 97%. Additional hardware complexity analysis advocates SVM to be implemented on hardware. To test the framework, we implement a condition-based attack insertion module; attacks are performed intra- and intercluster. The proposed real-time anomaly detection framework is fully placed and routed on Xilinx Virtex-7 FPGA. Postplace and -route implementation results show that SVM has 12% to 2% area overhead and 3% to 1% power overhead for the quad-core and 16-core implementation, respectively. It is also observed that it takes 25% to 18% of the total execution time to detect an anomaly in transferred packets for quad-core and 16-core, respectively. The proposed framework achieves 65% reduction in area overhead and is 3 times faster compared to previous published work.

Funder

Defense Advanced Research Projects Agency

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TD-Zero: Automatic Golden-Free Hardware Trojan Detection Using Zero-Shot Learning;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2024-07

2. A Review on Tongue Based Assistive Technology, Devices and FPGA Processors Using Machine Learning Module;Wireless Personal Communications;2024-01

3. Dynamic Data Abstraction-Based Anomaly Detection for Industrial Control Systems;Electronics;2023-12-29

4. Security Aspects of Quantum Machine Learning;Quantum Computing in Cybersecurity;2023-10-13

5. Cascaded Machine Learning Model Based DoS Attacks Detection and Classification in NoC;2023 IEEE International Symposium on Circuits and Systems (ISCAS);2023-05-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3