Tetris-XL

Author:

Xu Weifeng1,Tessier Russell1

Affiliation:

1. University of Massachusetts Amherst, Amherst, MA

Abstract

As technology has advanced, the application space of Very Long Instruction Word (VLIW) processors has grown to include a variety of embedded platforms. Due to cost and power consumption constraints, many embedded VLIW processors contain limited resources, including registers. As a result, a VLIW compiler that maximizes instruction level parallelism (ILP) without considering register constraints may generate excessive register spills, leading to reduced overall system performance. To address this issue, this article presents a new spill reduction technique that improves VLIW runtime performance by reordering operations prior to register allocation and instruction scheduling. Unlike earlier algorithms, our approach explicitly considers both register reduction and data dependency in performing operation reordering. Data dependency control limits unexpected schedule length increases during subsequent instruction scheduling. Our technique has been evaluated using Trimaran, an academic VLIW compiler, and evaluated using a set of embedded systems benchmarks. Experimental results show that, on average, this technique improves VLIW performance by 10% for VLIW processors with 32 registers and 8 functional units compared with previous spill reduction techniques. Limited improvement is seen versus prior approaches for VLIW processors with 64 registers and 8 functional units.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Reference28 articles.

1. On the complexity of spill everywhere under SSA form

2. Briggs P. 1992. Register allocation via graph coloring. Ph.D. thesis Department of Computer Science Rice University. Briggs P. 1992. Register allocation via graph coloring. Ph.D. thesis Department of Computer Science Rice University.

3. Coloring heuristics for register allocation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3