Differential Frequency Heterodyne Time-of-Flight Imaging for Instantaneous Depth and Velocity Estimation

Author:

Hu Yunpu1ORCID,Miyashita Leo1ORCID,Ishikawa Masatoshi1ORCID

Affiliation:

1. The University of Tokyo, Bunkyo-ku, Tokyo, Japan

Abstract

In this study, we discuss the imaging of depth and velocity using heterodyne-mode time-of-flight (ToF) cameras. In particular, Doppler ToF (D-ToF) imaging utilizes heterodyne modulation to measure the velocity from the Doppler frequency shift, which uniquely facilitates the instantaneous radial velocity estimation. However, theoretical discussion on D-ToF is limited to orthogonal frequency and sinusoidal waveform modulation. This study extends the formulation of the D-ToF imaging, and proposes an arbitrary-frequency, arbitrary-waveform framework considering a phase-compensated, symmetrical two-dimensional correlation map. With the proposed framework, the optimal heterodyne frequency for frequency decoding is found. A differential frequency sampling and decoding method is then proposed, which computes the frequency and phase from as few as four simultaneously captured images. With an experiment platform we built, it is confirmed that the minimum velocity sensing error is half that of the orthogonal frequency method, and the sensible phase range is approximately 2.5 times larger. The conclusions in this study allow the ToF velocity imaging to be applied at the optimal sample frequencies for a wide range of ToF sensors. This pushes one step further to the practical use of ToF velocity imaging.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3