Free-form scanning of non-planar appearance with neural trace photography

Author:

Ma Xiaohe1,Kang Kaizhang1,Zhu Ruisheng1,Wu Hongzhi1,Zhou Kun2

Affiliation:

1. Zhejiang University, China

2. Zhejiang University and ZJU-FaceUnity Joint Lab of Intelligent Graphics, Chinaa

Abstract

We propose neural trace photography, a novel framework to automatically learn high-quality scanning of non-planar, complex anisotropic appearance. Our key insight is that free-form appearance scanning can be cast as a geometry learning problem on unstructured point clouds, each of which represents an image measurement and the corresponding acquisition condition. Based on this connection, we carefully design a neural network, to jointly optimize the lighting conditions to be used in acquisition, as well as the spatially independent reconstruction of reflectance from corresponding measurements. Our framework is not tied to a specific setup, and can adapt to various factors in a data-driven manner. We demonstrate the effectiveness of our framework on a number of physical objects with a wide variation in appearance. The objects are captured with a light-weight mobile device, consisting of a single camera and an RGB LED array. We also generalize the framework to other common types of light sources, including a point, a linear and an area light.

Funder

National Key Research & Development Program of China

NSF China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3