Kelvin transformations for simulations on infinite domains

Author:

Nabizadeh Mohammad Sina1,Ramamoorthi Ravi1,Chern Albert1

Affiliation:

1. University of California

Abstract

Solving partial differential equations (PDEs) on infinite domains has been a challenging task in physical simulations and geometry processing. We introduce a general technique to transform a PDE problem on an unbounded domain to a PDE problem on a bounded domain. Our method uses the Kelvin Transform, which essentially inverts the distance from the origin. However, naive application of this coordinate mapping can still result in a singularity at the origin in the transformed domain. We show that by factoring the desired solution into the product of an analytically known (asymptotic) component and another function to solve for, the problem can be made continuous and compact, with solutions significantly more efficient and well-conditioned than traditional finite element and Monte Carlo numerical PDE methods on stretched coordinates. Specifically, we show that every Poisson or Laplace equation on an infinite domain is transformed to another Poisson (Laplace) equation on a compact region. In other words, any existing Poisson solver on a bounded domain is readily an infinite domain Poisson solver after being wrapped by our transformation. We demonstrate the integration of our method with finite difference and Monte Carlo PDE solvers, with applications in the fluid pressure solve and simulating electromagnetism, including visualizations of the solar magnetic field. Our transformation technique also applies to the Helmholtz equation whose solutions oscillate out to infinity. After the transformation, the Helmholtz equation becomes a tractable equation on a bounded domain without infinite oscillation. To our knowledge, this is the first time that the Helmholtz equation on an infinite domain is solved on a bounded grid without requiring an artificial absorbing boundary condition.

Funder

Ronald L. Graham Chair

UC San Diego Center for Visual Computing

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved near-field PML absorbing functions for exterior three-dimensional Helmholtz problems;Computer Methods in Applied Mechanics and Engineering;2024-08

2. Walkin’ Robin: Walk on Stars with Robin Boundary Conditions;ACM Transactions on Graphics;2024-07-19

3. Velocity-Based Monte Carlo Fluids;Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers '24;2024-07-13

4. Mesh‐free Monte Carlo method for electrostatic problems with floating potentials;High Voltage;2024-07-07

5. What to expect from scalar-tensor space geodesy;Physical Review D;2024-04-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3