A non-exponential transmittance model for volumetric scene representations

Author:

Vicini Delio1,Jakob Wenzel2,Kaplanyan Anton3

Affiliation:

1. Facebook Reality Labs and École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

2. École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

3. Facebook Reality Labs

Abstract

We introduce a novel transmittance model to improve the volumetric representation of 3D scenes. The model can represent opaque surfaces in the volumetric light transport framework. Volumetric representations are useful for complex scenes, and become increasingly popular for level of detail and scene reconstruction. The traditional exponential transmittance model found in volumetric light transport cannot capture correlations in visibility across volume elements. When representing opaque surfaces as volumetric density, this leads to both bloating of silhouettes and light leaking artifacts. By introducing a parametric non-exponential transmittance model, we are able to approximate these correlation effects and significantly improve the accuracy of volumetric appearance representation of opaque scenes. Our parametric transmittance model can represent a continuum between the linear transmittance that opaque surfaces exhibit and the traditional exponential transmittance encountered in participating media and unstructured geometries. This covers a large part of the spectrum of geometric structures encountered in complex scenes. In order to handle the spatially varying transmittance correlation effects, we further extend the theory of non-exponential participating media to a heterogeneous transmittance model. Our model is compact in storage and computationally efficient both for evaluation and for reverse-mode gradient computation. Applying our model to optimization algorithms yields significant improvements in volumetric scene appearance quality. We further show improvements for relevant applications, such as scene appearance prefiltering, image-based scene reconstruction using differentiable rendering, neural representations, and compare it to a conventional exponential model.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference48 articles.

1. State-of-the-Art in GPU-Based Large-Scale Volume Visualization

2. Sai Bi Zexiang Xu Pratul Srinivasan Ben Mildenhall Kalyan Sunkavalli Miloš Hašan Yannick Hold-Geoffroy David Kriegman and Ravi Ramamoorthi. 2020a. Neural Reflectance Fields for Appearance Acquisition. arXiv:2008.03824 Sai Bi Zexiang Xu Pratul Srinivasan Ben Mildenhall Kalyan Sunkavalli Miloš Hašan Yannick Hold-Geoffroy David Kriegman and Ravi Ramamoorthi. 2020a. Neural Reflectance Fields for Appearance Acquisition. arXiv:2008.03824

3. Sai Bi Zexiang Xu Kalyan Sunkavalli Miloš Hašan Yannick Hold-Geoffroy David Kriegman and Ravi Ramamoorthi. 2020b. Deep Reflectance Volumes: Relightable Reconstructions from Multi-view Photometric Images. In ECCV. 25 pages. Sai Bi Zexiang Xu Kalyan Sunkavalli Miloš Hašan Yannick Hold-Geoffroy David Kriegman and Ravi Ramamoorthi. 2020b. Deep Reflectance Volumes: Relightable Reconstructions from Multi-view Photometric Images. In ECCV. 25 pages.

4. A radiative transfer framework for non-exponential media;Bitterli Benedikt;ACM Trans. Graph. (Proc. SIGGRAPH Asia),2018

5. On the Distribution of Free Path Lengths for the Periodic Lorentz Gas III

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3