Scalable image-based indoor scene rendering with reflections

Author:

Xu Jiamin1,Wu Xiuchao1,Zhu Zihan1,Huang Qixing2,Yang Yin3,Bao Hujun1,Xu Weiwei1

Affiliation:

1. Zhejiang University, China

2. University of Texas at Austin

3. Clemson University

Abstract

This paper proposes a novel scalable image-based rendering (IBR) pipeline for indoor scenes with reflections. We make substantial progress towards three sub-problems in IBR, namely, depth and reflection reconstruction, view selection for temporally coherent view-warping, and smooth rendering refinements. First, we introduce a global-mesh-guided alternating optimization algorithm that robustly extracts a two-layer geometric representation. The front and back layers encode the RGB-D reconstruction and the reflection reconstruction, respectively. This representation minimizes the image composition error under novel views, enabling accurate renderings of reflections. Second, we introduce a novel approach to select adjacent views and compute blending weights for smooth and temporal coherent renderings. The third contribution is a supersampling network with a motion vector rectification module that refines the rendering results to improve the final output's temporal coherence. These three contributions together lead to a novel system that produces highly realistic rendering results with various reflections. The rendering quality outperforms state-of-the-art IBR or neural rendering algorithms considerably.

Funder

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference83 articles.

1. S. Agarwal K. Mierle and Others. 2010. Ceres Solver. http://ceres-solver.org. S. Agarwal K. Mierle and Others. 2010. Ceres Solver. http://ceres-solver.org.

2. Immersive light field video with a layered mesh representation

3. Unstructured lumigraph rendering. In ACM;Buehler C.;Trans. Graph. 425--432.,2001

4. J. Caballero C. Ledig A. P. Aitken A. Acosta J. Totz Z. Wang and W. Shi. 2017. Real-Time Video Super-Resolution with Spatio-Temporal Networks and Motion Compensation. In CVPR IEEE. 2848--2857. J. Caballero C. Ledig A. P. Aitken A. Acosta J. Totz Z. Wang and W. Shi. 2017. Real-Time Video Super-Resolution with Spatio-Temporal Networks and Motion Compensation. In CVPR IEEE. 2848--2857.

5. CapturingReality. 2016. Reality capture http://capturingreality.com. CapturingReality. 2016. Reality capture http://capturingreality.com.

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling Practical Multi-Center-of-Projection Using Ellipsoid;IEEE Access;2024

2. VR-NeRF: High-Fidelity Virtualized Walkable Spaces;SIGGRAPH Asia 2023 Conference Papers;2023-12-10

3. Rendering real-world unbounded scenes with cars by learning positional bias;The Visual Computer;2023-09-12

4. Automatic design-preserving virtual garment transfer;The Journal of The Textile Institute;2023-08-26

5. NeRFVS: Neural Radiance Fields for Free View Synthesis via Geometry Scaffolds;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3