Guaranteed-quality higher-order triangular meshing of 2D domains

Author:

Mandad Manish1,Campen Marcel1

Affiliation:

1. Osnabrück University, Germany

Abstract

We present a guaranteed quality mesh generation algorithm for the curvilinear triangulation of planar domains with piecewise polynomial boundary. The resulting mesh consists of higher-order triangular elements which are not only regular (i.e., with injective geometric map) but respect strict bounds on quality measures like scaled Jacobian and MIPS distortion. This also implies that the curved triangles' inner angles are bounded from above and below. These are key quality criteria, for instance, in the field of finite element analysis. The domain boundary is reproduced exactly, without geometric approximation error. The central idea is to transform the curvilinear meshing problem into a linear meshing problem via a carefully constructed transformation of bounded distortion, enabling us to leverage key results on guaranteed-quality straight-edge triangulation. The transformation is based on a simple yet general construction and observations about convergence properties of curves under subdivision. Our algorithm can handle arbitrary polynomial order, arbitrarily sharp corners, feature and interface curves, and can be executed using rational arithmetic for strict reliability.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 3D Bézier Guarding: Boundary-Conforming Curved Tetrahedral Meshing;ACM Transactions on Graphics;2023-12-05

2. Analysis of the Computational Cost of PolyFront: an Algorithm for Planar Triangulation;Journal of Advances in Applied & Computational Mathematics;2023-09-22

3. A Survey of Indicators for Mesh Quality Assessment;Computer Graphics Forum;2023-05

4. Representation Learning for Wafer Pattern Recognition in Semiconductor Manufacturing Process;2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC);2023-02-20

5. Rational Bézier Guarding;Computer Graphics Forum;2022-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3