DeepFormableTag

Author:

Yaldiz Mustafa B.1,Meuleman Andreas1,Jang Hyeonjoong1,Ha Hyunho1,Kim Min H.1

Affiliation:

1. KAIST, South Korea

Abstract

Fiducial markers have been broadly used to identify objects or embed messages that can be detected by a camera. Primarily, existing detection methods assume that markers are printed on ideally planar surfaces. The size of a message or identification code is limited by the spatial resolution of binary patterns in a marker. Markers often fail to be recognized due to various imaging artifacts of optical/perspective distortion and motion blur. To overcome these limitations, we propose a novel deformable fiducial marker system that consists of three main parts: First, a fiducial marker generator creates a set of free-form color patterns to encode significantly large-scale information in unique visual codes. Second, a differentiable image simulator creates a training dataset of photorealistic scene images with the deformed markers, being rendered during optimization in a differentiable manner. The rendered images include realistic shading with specular reflection, optical distortion, defocus and motion blur, color alteration, imaging noise, and shape deformation of markers. Lastly, a trained marker detector seeks the regions of interest and recognizes multiple marker patterns simultaneously via inverse deformation transformation. The deformable marker creator and detector networks are jointly optimized via the differentiable photorealistic renderer in an end-to-end manner, allowing us to robustly recognize a wide range of deformable markers with high accuracy. Our deformable marker system is capable of decoding 36-bit messages successfully at ~29 fps with severe shape deformation. Results validate that our system significantly outperforms the traditional and data-driven marker methods. Our learning-based marker system opens up new interesting applications of fiducial markers, including cost-effective motion capture of the human body, active 3D scanning using our fiducial markers' array as structured light patterns, and robust augmented reality rendering of virtual objects on dynamic surfaces.

Funder

Samsung Research Funding Center of Samsung Electronics

Korea NRF grant

MSRA

MSIT/IITP of Korea

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Uncovering the Metaverse within Everyday Environments: A Coarse-to-Fine ApproachBehaviors;2024 IEEE 48th Annual Computers, Software, and Applications Conference (COMPSAC);2024-07-02

2. Fiducial Objects: Custom Design and Evaluation;Sensors;2023-12-06

3. Soft Tissue Monitoring of the Surgical Field: Detection and Tracking of Breast Surface Deformations;IEEE Transactions on Biomedical Engineering;2023-07

4. Neural Lens Modeling;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2023-06

5. HydraMarker: Efficient, Flexible, and Multifold Marker Field Generation;IEEE Transactions on Pattern Analysis and Machine Intelligence;2023-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3