Transfer matrix based layered materials rendering

Author:

Randrianandrasana Joël1,Callet Patrick2,Lucas Laurent3

Affiliation:

1. University of Reims Champagne-Ardenne, France and United Visual Researchers, France

2. MINES ParisTech, France

3. University of Reims Champagne-Ardenne, France

Abstract

A statistical multi-lobe approach was recently introduced in order to efficiently handle layered materials rendering as an alternative to expensive general-purpose approaches. However, this approach poorly supports scattering volumes as the method does not account for back-scattering and resorts to single scattering approximations. In this paper, we address these limitations with an efficient solution based upon a transfer matrix approach which leverages the properties of the Henyey-Greenstein phase function. Under this formalism, each scattering component of the stack is described through a lightweight matrix, layering operations are reduced to simple matrix products and the statistics of each BSDF lobe accounting for multiple scattering effects are obtained through matrix operators. Based on this representation, we leverage the versatility of the transfer matrix approach to efficiently handle forward and backward scattering which occurs in arbitrary layered materials. The resulting model enables the reproduction of a wide range of layered structures embedding scattering volumes of arbitrary depth, in constant computation time and with low variance.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3