LXM: better splittable pseudorandom number generators (and almost as fast)

Author:

Steele Jr. Guy L.1ORCID,Vigna Sebastiano2ORCID

Affiliation:

1. Oracle Labs, USA

2. University of Milan, Italy

Abstract

In 2014, Steele, Lea, and Flood presented SplitMix, an object-oriented pseudorandom number generator (prng) that is quite fast (9 64-bit arithmetic/logical operations per 64 bits generated) and also splittable . A conventional prng object provides a generate method that returns one pseudorandom value and updates the state of the prng; a splittable prng object also has a second operation, split , that replaces the original prng object with two (seemingly) independent prng objects, by creating and returning a new such object and updating the state of the original object. Splittable prng objects make it easy to organize the use of pseudorandom numbers in multithreaded programs structured using fork-join parallelism. This overall strategy still appears to be sound, but the specific arithmetic calculation used for generate in the SplitMix algorithm has some detectable weaknesses, and the period of any one generator is limited to 2 64 . Here we present the LXM family of prng algorithms. The idea is an old one: combine the outputs of two independent prng algorithms, then (optionally) feed the result to a mixing function. An LXM algorithm uses a linear congruential subgenerator and an F 2 -linear subgenerator; the examples studied in this paper use a linear congruential generator (LCG) of period 2 16 , 2 32 , 2 64 , or 2 128 with one of the multipliers recommended by L’Ecuyer or by Steele and Vigna, and an F 2 -linear xor-based generator (XBG) of the xoshiro family or xoroshiro family as described by Blackman and Vigna. For mixing functions we study the MurmurHash3 finalizer function; variants by David Stafford, Doug Lea, and degski; and the null (identity) mixing function. Like SplitMix, LXM provides both a generate operation and a split operation. Also like SplitMix, LXM requires no locking or other synchronization (other than the usual memory fence after instance initialization), and is suitable for use with simd instruction sets because it has no branches or loops. We analyze the period and equidistribution properties of LXM generators, and present the results of thorough testing of specific members of this family, using the TestU01 and PractRand test suites, not only on single instances of the algorithm but also for collections of instances, used in parallel, ranging in size from 2 to 2 24 . Single instances of LXM that include a strong mixing function appear to have no major weaknesses, and LXM is significantly more robust than SplitMix against accidental correlation in a multithreaded setting. We believe that LXM, like SplitMix, is suitable for “everyday” scientific and machine-learning applications (but not cryptographic applications), especially when concurrent threads or distributed processes are involved.

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Reference66 articles.

1. Austin Appleby. 2016. SMHasher. 8 Jan. 2016 https://github.com/aappleby/smhasher Austin Appleby. 2016. SMHasher. 8 Jan. 2016 https://github.com/aappleby/smhasher

2. SIAM Journal on computing, 15, 2, 364–383;Blum Lenore

3. How to Generate Cryptographically Strong Sequences of Pseudorandom Bits

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3