TTV Regularized LRTA Technique for the Estimation of Haze Model Parameters in Video Dehazing

Author:

S. Baiju P.1ORCID,George Sudhish N.1

Affiliation:

1. National Institute of Technology Calicut, Kerala, India

Abstract

Nowadays, intelligent transport systems have a major role in providing a safe and secure traffic society for passengers, pedestrians, and vehicles. However, some bad weather conditions such as haze or fog may affect the visual clarity of video footage captured by the camera. This will cause a malfunction in further video processing algorithms performed by such automated systems. This article proposes an efficient technique for estimating the atmospheric light and the transmission map in the haze model entirely in tensor domain for video dehazing. In this work, the atmospheric light is appraised using the Mie scattering principle of visible light and the temporal coherency among the frames is achieved by means of tensor algebra. Furthermore, the transmission map is computed using Low Rank Tensor Approximation (LRTA) based on Weighted Tensor Nuclear Norm (WTNN) minimization and Tensor Total Variation (TTV) regularization. WTNN minimization is used to smooth the coarse transmission map, and TTV regularization is employed to maintain spatio-temporal continuity by preserving the details of salient structures and edges. The novelty of the proposed model is confined in the efficient formulation of a unified optimization model for the estimation of transmission map and atmospheric light in the tensor domain with fine-tuned regularization terms, which is not reported till now in the direction of video dehazing. Extensive experiments show that the proposed method outperforms state-of-the-art methods in video dehazing.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Image Defogging Based on Regional Gradient Constrained Prior;ACM Transactions on Multimedia Computing, Communications, and Applications;2023-10-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3