Linear-Time Approximation for Maximum Weight Matching

Author:

Duan Ran1,Pettie Seth2

Affiliation:

1. Max-Planck-Institut für Informatik

2. University of Michigan

Abstract

The maximum cardinality and maximum weight matching problems can be solved in Õ ( mn ) time, a bound that has resisted improvement despite decades of research. (Here m and n are the number of edges and vertices.) In this article, we demonstrate that this “ mn barrier” can be bypassed by approximation. For any ε > 0, we give an algorithm that computes a (1 − ε )-approximate maximum weight matching in O ( −1 log ε −1 ) time, that is, optimal linear time for any fixed ε . Our algorithm is dramatically simpler than the best exact maximum weight matching algorithms on general graphs and should be appealing in all applications that can tolerate a negligible relative error.

Funder

Division of Computing and Communication Foundations

United States-Israel Binational Science Foundation

Alexander von Humboldt-Stiftung

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 123 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A shared ride matching approach to low-carbon and electrified ridesplitting;Journal of Cleaner Production;2024-08

2. Dynamic Matching with Better-than-2 Approximation in Polylogarithmic Update Time;Journal of the ACM;2024-07-23

3. Minimum jointly structural input and output selection;Automatica;2024-07

4. Brief Announcement: Minimizing the Weighted Average Shortest Path Length in Demand-Aware Networks via Matching Augmentation;Proceedings of the 36th ACM Symposium on Parallelism in Algorithms and Architectures;2024-06-17

5. Approximating Maximum Matching Requires Almost Quadratic Time;Proceedings of the 56th Annual ACM Symposium on Theory of Computing;2024-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3