Real-world design and evaluation of compiler-managed GPU redundant multithreading

Author:

Wadden Jack1,Lyashevsky Alexander2,Gurumurthi Sudhanva3,Sridharan Vilas4,Skadron Kevin1

Affiliation:

1. University of Virginia, Charlottesville, Virginia, USA

2. AMD Research, Advanced Micro Devices, Inc., Sunnyvale, CA, USA

3. AMD Research, Advanced Micro Devices, Inc., Boxborough, MA, USA

4. RAS Architecture, Advanced Micro Devices, Inc., Boxborough, MA, USA

Abstract

Reliability for general purpose processing on the GPU (GPGPU) is becoming a weak link in the construction of reliable supercomputer systems. Because hardware protection is expensive to develop, requires dedicated on-chip resources, and is not portable across different architectures, the efficiency of software solutions such as redundant multithreading (RMT) must be explored. This paper presents a real-world design and evaluation of automatic software RMT on GPU hardware. We first describe a compiler pass that automatically converts GPGPU kernels into redundantly threaded versions. We then perform detailed power and performance evaluations of three RMT algorithms, each of which provides fault coverage to a set of structures in the GPU. Using real hardware, we show that compilermanaged software RMT has highly variable costs. We further analyze the individual costs of redundant work scheduling, redundant computation, and inter-thread communication, showing that no single component in general is responsible for high overheads across all applications; instead, certain workload properties tend to cause RMT to perform well or poorly. Finally, we demonstrate the benefit of architectural support for RMT with a specific example of fast, register-level thread communication

Publisher

Association for Computing Machinery (ACM)

Reference35 articles.

1. LLVM. {Online}. Available: http://llvm.org LLVM. {Online}. Available: http://llvm.org

2. S. Ahern A. Shoshani K.-L. Ma A. Choudhary T. Critchlow S. Klasky V. Pascucci J. Ahrens E. W. Bethel H. Childs J. Huang K. Joy Q. Koziol G. Lofstead J. S. Meredith K. Moreland G. Ostrouchov M. Papka V. Vishwanath M. Wolf N. Wright and K. Wu Scientific Discovery at the Exascale a Report from the DOE ASCR 2011 Workshop on Exascale Data Management Analysis and Visualization 2011. S. Ahern A. Shoshani K.-L. Ma A. Choudhary T. Critchlow S. Klasky V. Pascucci J. Ahrens E. W. Bethel H. Childs J. Huang K. Joy Q. Koziol G. Lofstead J. S. Meredith K. Moreland G. Ostrouchov M. Papka V. Vishwanath M. Wolf N. Wright and K. Wu Scientific Discovery at the Exascale a Report from the DOE ASCR 2011 Workshop on Exascale Data Management Analysis and Visualization 2011.

3. AMD. AMD CodeXL. Available: http://developer.amd.com/tools-and-sdks/heterogeneous-computing/codexl/ AMD. AMD CodeXL. Available: http://developer.amd.com/tools-and-sdks/heterogeneous-computing/codexl/

4. AMD. AMD Graphics Cores Next (GCN) Architecture. Available: http://www.amd.com/us/Documents/GCN_Architecture_whitepaper.pdf AMD. AMD Graphics Cores Next (GCN) Architecture. Available: http://www.amd.com/us/Documents/GCN_Architecture_whitepaper.pdf

5. AMD. OpenCL Accelerated Parallel Processing (APP) SDK. Available: http://developer.amd.com/tools-and-sdks/heterogeneous-computing/amd-accelerated-parallel-processing-app-sdk/downloads/ AMD. OpenCL Accelerated Parallel Processing (APP) SDK. Available: http://developer.amd.com/tools-and-sdks/heterogeneous-computing/amd-accelerated-parallel-processing-app-sdk/downloads/

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3